384 research outputs found

    A Tribute

    Get PDF

    IMPACTS OF PESTICIDE REGULATION ON THE CALIFORNIA STRAWBERRY INDUSTRY

    Get PDF
    Environmental regulation of agriculture is becoming increasingly important, and growers are increasingly concerned about the effects of regulations on their profitability. Regulations governing the use of a pesticide affect its economic value. Further, growers often face a choice among pesticide alternatives, each with its own set of regulatory restrictions. In this environment, the introduction of a new regulation can have complex effects on growers' profit-maximizing pesticide choices. Buffer zones and regional emissions caps mean that pesticide choices can have important spatial components. Our paper presents an optimization model that incorporates spatial considerations at the field and regional level. We apply our model to fumigant choice by California strawberry growers. The industry is facing an impending ban on the use of methyl bromide, which in conjunction with chloropicrin was the standard fumigant for over forty years. In addition to the forthcoming ban, the state government has imposed regulations governing methyl bromide application, including buffer zones, etc. These extreme use restrictions provide us with an interesting environment for modeling the effects of pesticide regulations. There are currently two legally available fumigants that may substitute for methyl bromide in strawberries: 1,3-D and chloropicrin. 1, 3-D is subject to township caps and other restrictions. Township caps limit total application in an area. The California Department of Pesticide Regulation is currently undertaking air monitoring and other activities to determine whether or not buffer zones and other restrictions should be applied to chloropicrin. We evaluate the effects of current and proposed regulations on field-level decisions and industry costs and returns. Methodology To the best of our knowledge, no study has examined the role of pesticide use regulations in determining growers' profit-maximizing pesticide choices at the field level. We do so by combining three datasets with a field-level spatial model of the profit-maximizing fumigation decision. The first dataset includes detailed field-level information regarding the costs and yields associated with alternative fumigants obtained from a multi-disciplinary research project. The second includes chemical-specific California use regulations regarding treatment rates, buffer zones, and other restrictions. The third includes information on the shapes and sizes of strawberry fields in California. Using these data, the optimization model computes the profit-maximizing treatment for each field including pattern of treatment and number of acres treated per day, etc. Field-level results are aggregated to evaluate the impact of regional pesticide regulations, and then to estimate the industry-level effects of current and proposed pesticide use regulations. We model the effects of the entire regulatory system on the fumigation decisions made by farmers. The restrictions on fumigants are integrated into a field-level programming model of a grower's fumigant decision choice. The program calculates the optimal fumigation plan for a field, given the field's size and shape, and use regulations, and per-acre costs and returns associated with each fumigant. The resulting field-level choices are aggregated in order to check for consistency with township caps. If caps are exceeded, the model is rerun using a number of allocation rules. All choices for all fields are aggregated in order to obtain industry-level results. We perform this procedure for the current set of restrictions and for several alternative sets, assessing the profitability of each alternative. For example, we remove the existing township caps on 1,3-D and evaluate how much the results change. We include varying buffer zone restrictions on chloropicrin, and evaluate whether growers' fumigant choices are sensitive to the size of the buffer zone. Relevance Environmental regulation of agriculture is becoming increasingly important. By explicitly analyzing the effect of regulations affecting methyl bromide alternatives in a model that includes both the spatial dimensions of some regulations and the costs and yields associated with each alternative, we will obtain a more detailed and accurate assessment of the costs of these regulations than is currently available. Our results will provide a greater understanding of the effects of these regulations on industry profitability, and how these regulations interact. Our model can be applied to other cases of pesticide regulations. Given the increasing importance of environmental regulation in agriculture, it is important to aid policymakers in understanding how regulations interact with each other, possibly in unexpected ways.Environmental Economics and Policy,

    Interview with Lydia Groves

    Get PDF
    An interview with Lydia Groves regarding her experiences in a one-room school house.https://scholars.fhsu.edu/ors/1063/thumbnail.jp

    Comment on Spracklandus Hoser, 2009 (Reptilia, Serpentes, ELAPIDAE): request for confirmation of the availability of the generic name and for the nomenclatural validation of the journal in which it was published (Case 3601; see BZN 70: 234–237; 71: 30–38, 133–135, 181–182, 252–253)

    Get PDF

    Multi-Scale Stellar Associations across the Star Formation Hierarchy in PHANGS-HST Nearby Galaxies: Methodology and Properties

    Full text link
    We develop a method to identify and determine the physical properties of stellar associations using Hubble Space Telescope (HST) NUV-U-B-V-I imaging of nearby galaxies from the PHANGS-HST survey. We apply a watershed algorithm to density maps constructed from point source catalogues Gaussian smoothed to multiple physical scales from 8 to 64 pc. We develop our method on two galaxies that span the distance range in the PHANGS-HST sample: NGC 3351 (10 Mpc), NGC 1566 (18 Mpc). We test our algorithm with different parameters such as the choice of detection band for the point source catalogue (NUV or V), source density image filtering methods, and absolute magnitude limits. We characterise the properties of the resulting multi-scale associations, including sizes, number of tracer stars, number of associations, photometry, as well as ages, masses, and reddening from Spectral Energy Distribution fitting. Our method successfully identifies structures that occupy loci in the UBVI colour-colour diagram consistent with previously published catalogues of clusters and associations. The median ages of the associations increases from log(age/yr) = 6.6 to log(age/yr) = 6.9 as the spatial scale increases from 8 pc to 64 pc for both galaxies. We find that the youngest stellar associations, with ages < 3 Myr, indeed closely trace H ii regions in Hα\alpha imaging, and that older associations are increasingly anti-correlated with the Hα\alpha emission. Owing to our new method, the PHANGS-HST multi-scale associations provide a far more complete census of recent star formation activity than found with previous cluster and compact association catalogues. The method presented here will be applied to the full sample of 38 PHANGS-HST galaxies.Comment: Submitted to MNRAS. Referee report received with minor comments, and "request to clarify if the smaller associations are always included in the larger ones and how this may affect the photometric fitting of the larger association if the groups have different ages." Revision in progres
    • 

    corecore