246 research outputs found

    A microfluidic “baby machine” for cell synchronization

    Get PDF
    Common techniques used to synchronize eukaryotic cells in the cell cycle often impose metabolic stress on the cells or physically select for size rather than age. To address these deficiencies, a minimally perturbing method known as the “baby machine” was developed previously. In the technique, suspension cells are attached to a membrane, and as the cells divide, the newborn cells are eluted to produce a synchronous population of cells in the G1 phase of the cell cycle. However, the existing “baby machine” is only suitable for cells which can be chemically attached to a surface. Here, we present a microfluidic “baby machine” in which cells are held onto a surface by pressure differences rather than chemical attachment. As a result, our method can in principle be used to synchronize a variety of cell types, including cells which may have weak or unknown surface attachment chemistries. We validate our microfluidic “baby machine” by using it to produce a synchronous population of newborn L1210 mouse lymphocytic leukemia cells in G1 phase.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institute of General Medical Sciences (U.S.) (EUREKA R01GM085457

    Fluid control structures in microfluidic devices

    Get PDF
    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques

    Measuring single cell mass, volume, and density with dual suspended microchannel resonators

    Get PDF
    Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Cancer Institute (U.S.). Physical Sciences Oncology Center (U54CA143874)National Cancer Institute (U.S.). Cell Decision Process Center (P50GM68762)National Institutes of Health (U.S.) (Contract R01GM085457
    corecore