16 research outputs found

    Guiding principles for the design of a chemical vapor deposition process for highly crystalline transition metal dichalcogenides

    Full text link
    Two-dimensional transition metal dichalcogenides (TMDs) for advanced logic transistor technologies are deposited by various modifications of the chemical vapor deposition (CVD) method using a wide variety of precursors. Being a major electrical performance limiter, the TMD crystal grain size strongly differs between the various CVD precursor chemistries from nano- to millimeter-sized crystals. However, it remains unclear how the CVD precursor chemistry affects the nucleation density and resulting TMD crystal grain size. This work postulates guiding principles to design a CVD process for highly crystalline TMD deposition using a quantitative analytical model benchmarked against literature. The TMD nucleation density reduces favorably under low supersaturation conditions, where the metal precursor sorption on the starting surface is reversible and the corresponding metal precursor desorption rate exceeds the overall deposition rate. Such reversible precursor adsorption guarantees efficient long-range gas-phase lateral diffusion of precursor species in addition to short-range surface diffusion, which vitally increases crystal grain size. As such, the proposed model explains the large spread in experimentally observed TMD nucleation densities and crystal grain sizes for state-of-the-art CVD chemistries. Ultimately, it empowers the reader to interpret and modulate precursor adsorption and diffusion reactions through designing CVD precursor chemistries compatible with temperature sensitive application schemes

    Nucleation Mechanism during WS2 Plasma Enhanced Atomic Layer Deposition on Amorphous Al2O3 and Sapphire Substrates

    Get PDF
    The structure, crystallinity and properties of as-deposited two-dimensional (2D) transition metal dichalcogenides are determined by nucleation mechanisms in the deposition process. 2D materials grown by atomic layer deposition (ALD) in absence of a template, are polycrystalline or amorphous. Little is known about their nucleation mechanisms. Therefore, we investigate the nucleation behavior of WS2 during plasma enhanced ALD from WF6, H2 plasma and H2S at 300 °C on amorphous ALD Al2O3 starting surface and on monocrystalline, bulk sapphire. Preferential interaction of the precursors with the Al2O3 starting surface promotes fast closure of the WS2 layer. The WS2 layers are fully continuous at WS2 content corresponding to only 1.2 WS2 monolayers. On amorphous Al2O3, (0002) textured and polycrystalline WS2 layers form with grain size of 5 nm to 20 nm due to high nucleation density (~1014 nuclei/cm2). The WS2 growth mode changes from 2D (layer-by-layer) growth on the initial Al2O3 surface to three-dimensional (Volmer-Weber) growth after WS2 layer closure. Further growth proceeds from both WS2 basal planes in register with the underlying WS2 grain, and from or over grain boundaries of the underlying WS2 layer with different in-plane orientation. In contrast, on monocrystalline sapphire, WS2 crystal grains can locally align along a preferred in-plane orientation. Epitaxial seeding occurs locally albeit a large portion of crystals remain randomly oriented, presumably due to the low deposition temperature. The WS2 sheet resistance is 168 MΩµm suggesting that charge transport in the WS2 layers is limited by grain boundaries.status: publishe

    Correlated Intrinsic Electrical and Chemical Properties of Epitaxial WS2 via Combined C‐AFM and ToF‐SIMS Characterization

    No full text
    Abstract Atomically thin, 2D semiconductors, such as transition metal dichalcogenides, complement silicon in ultra‐scaled nano‐electronic devices. However, the semiconductor and its interfaces become increasingly more difficult to characterize chemically and electrically. Conventional methodologies, including scanning probe microscopies, fail to capture insight into the chemical and electronic nature of the semiconductor, albeit vital to understand its impact on the semiconductor performance. Therefore, this work presents a unique and universal in situ approach combining time‐of‐flight secondary ion mass spectrometry and atomic force microscopy to map chemical differences between regions of different electrical conductivity in epitaxially deposited tungsten disulfide (WS2) on sapphire substrates. Surprisingly, WS2 regions of lower electrical conductivity possess a larger amount of sulfur compared to regions with higher conductivity, for which oxygen is also detected. Such difference in chemical composition likely roots from the non‐homogeneously terminated sapphire starting surface, altering the WS2 nucleation behavior and associated defect formation between neighboring sapphire terraces. These resulting sapphire terrace‐dependent doping effects in the WS2 hamper its electrical conductivity. Thus, accurate chemical assignment at a sub‐micrometer lateral resolution of atomically thin 2D semiconductors is vital to achieve a more detailed understanding on how the growth behavior affects the electrical properties

    Plasma-Enhanced Atomic Layer Deposition of Two-Dimensional WS2 from WF6, H-2 Plasma, and H2S

    Get PDF
    Two-dimensional (2D) transition metal dichalcogenides are potential low dissipative semiconductor materials for nanoelectronic devices. Such applications require the deposition of these materials in their crystalline form and with controlled number of monolayers on large area substrates, preferably using deposition temperatures compatible with temperature sensitive structures. This paper presents a low temperature plasma-enhanced atomic layer deposition (PEALD) process for 2D WS2 based on a ternary reaction cycle consisting of consecutive WF6, H2 plasma, and H2S reactions. Strongly textured, nanocrystalline WS2 is grown at 300 °C. The composition and crystallinity of these layers depends on the PEALD process conditions, as understood by a model for the redox chemistry of this process. The H2 plasma is essential for the deposition of WS2 as it enables the reduction of −W6+Fx surface species. Nevertheless, the impact of subsurface reduction reactions needs to be minimized to obtain WS2 with well-controlled composition (S/W ratio of 2).status: publishe

    Two-Dimensional Crystal Grain Size Tuning in WS2 Atomic Layer Deposition: An Insight in the Nucleation Mechanism

    No full text
    © 2018 American Chemical Society. When two-dimensional (2D) group-VI transition metal dichalcogenides such as tungsten disulfide (WS 2 ) are grown by atomic layer deposition (ALD) for atomic growth control at low deposition temperatures (≤450 °C), they often suffer from a nanocrystalline grain structure limiting the carrier mobility. The crystallinity and monolayer thickness control during ALD of 2D materials is determined by the nucleation mechanism, which is currently not well understood. Here, we propose a qualitative model for the WS 2 nucleation behavior on dielectric surfaces during plasma-enhanced (PE-) ALD using tungsten hexafluoride (WF 6 ), dihydrogen (H 2 ) plasma and dihydrogen sulfide (H 2 S) based on analyses of the morphology of the WS 2 crystals. The WS 2 crystal grain size increases from ∼20 to 200 nm by lowering the nucleation density. This is achieved by lowering the precursor adsorption rate on the starting surface using an inherently less reactive starting surface, by decreasing the H 2 plasma reactivity, and by enhancing the mobility of the adsorbed species at higher deposition temperature. Since silicon dioxide (SiO 2 ) is less reactive than aluminum oxide (Al 2 O 3 ), and diffusion and crystal ripening is enhanced at higher deposition temperature, WS 2 nucleates in an anisotropic island-like growth mode with preferential lateral growth from the WS 2 crystal edges. This work emphasizes that increasing the crystal grain size while controlling the basal plane orientation is possible during ALD at low deposition temperatures, based on insight in the nucleation behavior, which is key to advance the field of ALD of 2D materials. Moreover, this work demonstrates the conformal deposition on three-dimensional (3D) structures, with WS 2 retaining the basal plane orientation along topographic structures.status: publishe

    Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents

    No full text
    We demonstrate the impact of reducing agents for Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD) of WS2 from WF6 and H2S precursors. Nanocrystalline WS2 layers with a two-dimensional structure can be obtained at low deposition temperatures (300-450 °C) without using a template or anneal.crosscheck: This document is CrossCheck deposited identifier: M. Heyne (ResearcherID) copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal history: Received 26 June 2015; Accepted 7 September 2015; Accepted Manuscript published 7 September 2015; Advance Article published 14 September 2015; Version of Record published 15 October 2015status: publishe
    corecore