5,167 research outputs found

    Orientation and symmetries of Alexandrov spaces with applications in positive curvature

    Get PDF
    We develop two new tools for use in Alexandrov geometry: a theory of ramified orientable double covers and a particularly useful version of the Slice Theorem for actions of compact Lie groups. These tools are applied to the classification of compact, positively curved Alexandrov spaces with maximal symmetry rank.Comment: 34 pages. Simplified proofs throughout and a new proof of the Slice Theorem, correcting omissions in the previous versio

    Magnetic Bound States in Dimerized Quantum Spin Systems

    Full text link
    Magnetic bound states are a general phenomenon in low dimensional antiferromagnets with gapped singlet states. Using Raman scattering on three compounds as dedicated examples we show how exchange topology, dimensionality, defects and thermal fluctuations influence the properties and the spectral weight of these states.Comment: 3 pages, 1 figure, proceedings of the SCES'98, Paris, to be published in Physica

    Positive allosteric modulators of the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor

    Get PDF
    L-glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and plays a fundamental role in the control of motor function, cognition and mood. The physiological effects of glutamate are mediated through two functionally distinct receptor families. While activation of metabotropic (G-protein coupled) glutamate receptors results in modulation of neuronal excitability and transmission, the ionotropic glutamate receptors (ligand-gated ion channels) are responsible for mediating the fast synaptic response to extracellular glutamate

    The Municipal Utility and the Liberal Economic Ethic

    Get PDF

    Cultural views of life phases.

    Get PDF
    The knowledge base in the study of human development is built primarily from work with children from the modern, global, post-industrial population. This population is unrepresentative in many respects, not least in that childhood and adolescence is dominated by the experience of formal schooling—an experience missing from the lives of most of the world’s children until very recently. This entry will examine child development from the perspective of pre-modern societies as described in the ethnographic, archaeological and historic records. Specifically, we will review material indicative of cultural or indigenous models of development, phases and phase transitions, in particular

    Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies.

    Get PDF
    Hepatitis C virus (HCV) infection is dependent on at least three coreceptors: CD81, scavenger receptor BI (SR-BI), and claudin-1. The mechanism of how these molecules coordinate HCV entry is unknown. In this study we demonstrate that a cell culture-adapted JFH-1 mutant, with an amino acid change in E2 at position 451 (G451R), has a reduced dependency on SR-BI. This altered receptor dependency is accompanied by an increased sensitivity to neutralization by soluble CD81 and enhanced binding of recombinant E2 to cell surface-expressed and soluble CD81. Fractionation of HCV by density gradient centrifugation allows the analysis of particle-lipoprotein associations. The cell culture-adapted mutation alters the relationship between particle density and infectivity, with the peak infectivity occurring at higher density than the parental virus. No association was observed between particle density and SR-BI or CD81 coreceptor dependence. JFH-1 G451R is highly sensitive to neutralization by gp-specific antibodies, suggesting increased epitope exposure at the virion surface. Finally, an association was observed between JFH-1 particle density and sensitivity to neutralizing antibodies (NAbs), suggesting that lipoprotein association reduces the sensitivity of particles to NAbs. In summary, mutation of E2 at position 451 alters the relationship between particle density and infectivity, disrupts coreceptor dependence, and increases virion sensitivity to receptor mimics and NAbs. Our data suggest that a balanced interplay between HCV particles, lipoprotein components, and viral receptors allows the evasion of host immune responses

    Quantum transport in carbon nanotubes

    Get PDF
    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.Comment: In press at Reviews of Modern Physics. 68 pages, 55 figure

    Explaining Criminal Careers: Implications for Justice Policy

    Get PDF
    Explaining Criminal Careers presents a simple quantitative theory of crime, conviction and reconviction, the assumptions of the theory are derived directly from a detailed analysis of cohort samples drawn from the “UK Home Office” Offenders Index (OI). Mathematical models based on the theory, together with population trends, are used to make: exact quantitative predictions of features of criminal careers; aggregate crime levels; the prison population; and to explain the age-crime curve, alternative explanations are shown not to be supported by the data. Previous research is reviewed, clearly identifying the foundations of the current work. Using graphical techniques to identify mathematical regularities in the data, recidivism (risk) and frequency (rate) of conviction are analysed and modelled. These models are brought together to identify three categories of offender: high-risk / high-rate, high-risk / low-rate and low-risk / low-rate. The theory is shown to rest on just 6 basic assumptions. Within this theoretical framework the seriousness of offending, specialisation or versatility in offence types and the psychological characteristics of offenders are all explored suggesting that the most serious offenders are a random sample from the risk/rate categories but that those with custody later in their careers are predominantly high-risk/high-rate. In general offenders are shown to be versatile rather than specialist and can be categorised using psychological profiles. The policy implications are drawn out highlighting the importance of conviction in desistance from crime and the absence of any additional deterrence effect of imprisonment. The use of the theory in evaluation of interventions is demonstrated
    corecore