17 research outputs found

    Potentialités de production de Poly-Hydroxy-Alcanoates chez Cupriavidus necator sur substrats de type acides gras volatils : études cinétiques et métaboliques.

    Get PDF
    L’accumulation de biopolymĂšre de rĂ©serve (PolyHydroxyAlcanoates ou PHA) par la souche Cupriavidus necator, Ă  partir de substrats de type acides gras volatils (acide butyrique, acide propionique et acide acĂ©tique) a Ă©tĂ© Ă©tudiĂ©e. Elle est induite par une limitation phosphore. Les performances atteintes lors des cultures se situent parmi les meilleures de la littĂ©rature pour ce type de substrat : jusqu’à 66 g.L-1 de biomasse totale avec un pourcentage d’accumulation massique de 88% en PHB –PolyHydroxyButyrate- ou en PHB-co-HV -PolyHydroxyButyrate-co-HydroxyValerate- comportant jusqu’à 52% de motifs d’HV.\ud Pour chaque source carbonĂ©e, une caractĂ©risation cinĂ©tique et stƓchiomĂ©trique de la souche a Ă©tĂ© rĂ©alisĂ©e en l’absence d’effets inhibiteurs dus aux substrats acides grĂące Ă  des cultures de type Fed-Batch avec des apports non limitants et non inhibiteurs en carbone. Il a Ă©tĂ© dĂ©gagĂ© :\ud - un taux de croissance maximal de la souche de 0,33 h-1 pour les trois acides Ă©tudiĂ©s\ud - une relation entre vitesse spĂ©cifique de production de PHA et taux de croissance fixĂ©e par la disponibilitĂ© et les flux de production de NADPH2 avec un dĂ©couplage inverse pour les taux de croissance supĂ©rieurs Ă  0,05 h-1 et un couplage partiel pour les taux de croissance infĂ©rieurs\ud - un optimum de 0,35 Cmole.Cmole-1.h-1, associĂ© Ă  un taux de croissance de l’ordre de 0,05 h-1.\ud - une amĂ©lioration de la production de PHB en termes de vitesses spĂ©cifiques mais Ă©galement en termes de rendements si une faible croissance rĂ©siduelle est maintenue\ud La rĂ©ponse de la souche Ă  un excĂšs de substrat acide a Ă©tĂ© caractĂ©risĂ©e via l’étude de rĂ©gimes transitoires induits par des pulses sur des cultures continues prĂ©alablement stabilisĂ©es en rĂ©gime permanent. Il a Ă©tĂ© montrĂ© qu’en excĂšs de phosphore, face Ă  un brusque excĂšs de substrat, la souche est incapable d’adapter rapidement son taux de croissance. L’excĂšs est donc dirigĂ© vers la production de PHA dont les voies sont plus rapidement mobilisables. En conditions limitantes de phosphore, le substrat excĂ©dentaire est utilisĂ© pour la production de PHA. L’inhibition par les acides se traduit par une diminution des capacitĂ©s de biosynthĂšse de la biomasse et des PHA entrainant une rĂ©duction de l’assimilation du carbone puis une diminution des rendements de conversion. D’autre part la sensibilitĂ© d’un systĂšme continu Ă  un excĂšs de substrat dĂ©pend du point de fonctionnement choisi : plus il est optimal en termes de vitesse, moins le systĂšme est robuste. L’acide propionique est trĂšs inhibiteur comparĂ© aux autres acides Ă©tudiĂ©s (dĂšs 3-4 mM contre 30-40 mM). Il n’agit pas simplement via une accumulation excessive dans le cytoplasme mais il exerce Ă©galement une inhibition spĂ©cifique des voies mĂ©taboliques.\ud Un antagonisme entre les substrats (acide acĂ©tique et butyrique) a Ă©tĂ© constatĂ© et expliquĂ© grĂące Ă  une analyse des flux mĂ©taboliques. L’acide acĂ©tique est assimilĂ© prĂ©fĂ©rentiellement pour produire la biomasse, l’énergie et les cofacteurs nĂ©cessaires Ă  la production de PHA, alors que l’acide butyrique est utilisĂ© pour la synthĂšse de PHB. La proportion maximale d’acide acĂ©tique admise dans l’alimentation en fonction des conditions fixĂ©es en rĂ©gime permanent est calculĂ©e et peut ĂȘtre limitĂ©e Ă  40% du carbone.\ud Enfin il a Ă©tĂ© dĂ©terminĂ© que si une croissance rĂ©siduelle est assurĂ©e grĂące Ă  un apport en phosphore, le pourcentage maximal d’HV dans le polymĂšre dĂ©pend du taux d’acide propionique dans l’alimentation et ne peux dĂ©passer 33 ± 5% sur acide propionique pur. Par contre, si aucune croissance rĂ©siduelle n’est assurĂ©e, il est possible de convertir l’acide propionique en motifs d’HV uniquement.-------------------------------------------------------------------------------------------------------------------------------------------------------Reserve Biopolymer (PolyHydroxyAlkanoates or PHA) accumulation by the strain Cupriavidus necator, from Volatile Fatty Acids (VFA, like butyric acid, propionic acid and acetic acid) was investigated. This production is induced by a phosphorus limitation. For this type of substrates, performances reached during cultures are among the best listed in the literature: up to 66 g.L-1 of total biomass with 88% (w/w) of PHB –PolyHydroxyButyrate- or PHB-co-HV -PolyHydroxyButyrate-co-HydroxyValerate- with a HV content up to 52 Mole%.\ud For each carbon source, kinetic and stoechiometric characterization has been carried out thanks to Fed-Batch cultures with non-limiting and non-inhibitory carbon feed. It has been established:\ud - a maximal growth rate of 0,33 h-1 for the three acid investigated\ud - a relationship between specific PHA production rate and growth rate which is set by the availability and production flux of NADPH2. For growth rate above 0,05 h-1, there is an inverse coupling. For growth rate under 0,05 h-1, there is a partial coupling.\ud - an optimum of 0,35 Cmole.Cmole-1.h-1 is associated with a growth rate of 0,05 h-1.\ud - if a low residual growth rate is maintained, an improvement of PHB production is recorded in terms of specific production rate and yields\ud The response of the strain to an excess of acid substrate was characterized through the investigation of transient state induced by pulsed addition of substrate during continuous cultures stabilized in steady state. It was shown that in excess of phosphorus, when there is a substrate excess, the strain is unable to quickly adapt its growth rate, so the excess is directed to PHA production whose ways seem to be more easily mobilized. Under phosphorus limitation, an excess of substrate is used for PHA production. Acid inhibition results in a decrease in biomass and PHA production capacity which leads to a decrease in carbon assimilation and conversion yields. The sensitivity of a continuous system to an excess of substrate depends on the chosen operating point: the more it is optimal in terms of specific production rate, the less the system is robust. Propionic acid is highly inhibitory compared to the other acids studied (from 3-4 mM versus 30-40 mM). It does not act only via an excessive accumulation in the cytoplasm but also exerts a specific inhibition of metabolic pathways.\ud An antagonism between substrates (acetic and butyric acid) has been established and explained thanks to the Metabolic Flux Analysis. Acetic acid is preferentially used to produce biomass, energy and cofactors for PHA synthesis, whereas butyric acid is used to product PHB. According to the conditions set during steady state, maximal content of acetic acid admitted in the feed can be calculated. It can be limited to 40% of the carbon in the feed.\ud Finally if a growth rate is maintained thanks to a phosphorus supply, the maximal HV content in polymer is function of propionic acid in the feed and cannot exceed 33 ± 5 Mole% on pure propionic acid. Conversely, if there is no residual growth, a total conversion of propionic acid into HV is allowed.\ud \u

    Potentialités de production de Poly-Hydroxy-Alcanoates (PHA) chez Cupriavidus necator sur substrats de type acides gras volatifs (études cinétiques et métaboliques.)

    Get PDF
    L accumulation de biopolymĂšre de rĂ©serve (PolyHydroxyAlcanoates ou PHA) par la souche Cupriavidus necator, Ă  partir de substrats de type acides gras volatils (acide butyrique, acide propionique et acide acĂ©tique) a Ă©tĂ© Ă©tudiĂ©e. Elle est induite par une limitation phosphore. Les performances atteintes lors des cultures se situent parmi les meilleures de la littĂ©rature pour ce type de substrat : jusqu Ă  66 g.L-1 de biomasse totale avec un pourcentage d accumulation massique de 88% en PHB PolyHydroxyButyrate- ou en PHB-co-HV -PolyHydroxyButyrate-co-HydroxyValerate- comportant jusqu Ă  52% de motifs d HV.Pour chaque source carbonĂ©e, une caractĂ©risation cinĂ©tique et stƓchiomĂ©trique de la souche a Ă©tĂ© rĂ©alisĂ©e en l absence d effets inhibiteurs dus aux substrats acides grĂące Ă  des cultures de type Fed-Batch avec des apports non limitants et non inhibiteurs en carbone. Il a Ă©tĂ© dĂ©gagĂ© :- un taux de croissance maximal de la souche de 0,33 h-1 pour les trois acides Ă©tudiĂ©s- une relation entre vitesse spĂ©cifique de production de PHA et taux de croissance fixĂ©e par la disponibilitĂ© et les flux de production de NADPH2 avec un dĂ©couplage inverse pour les taux de croissance supĂ©rieurs Ă  0,05 h-1 et un couplage partiel pour les taux de croissance infĂ©rieurs- un optimum de 0,35 Cmole.Cmole-1.h-1, associĂ© Ă  un taux de croissance de l ordre de 0,05 h-1.- une amĂ©lioration de la production de PHB en termes de vitesses spĂ©cifiques mais Ă©galement en termes de rendements si une faible croissance rĂ©siduelle est maintenueLa rĂ©ponse de la souche Ă  un excĂšs de substrat acide a Ă©tĂ© caractĂ©risĂ©e via l Ă©tude de rĂ©gimes transitoires induits par des pulses sur des cultures continues prĂ©alablement stabilisĂ©es en rĂ©gime permanent. Il a Ă©tĂ© montrĂ© qu en excĂšs de phosphore, face Ă  un brusque excĂšs de substrat, la souche est incapable d adapter rapidement son taux de croissance. L excĂšs est donc dirigĂ© vers la production de PHA dont les voies sont plus rapidement mobilisables. En conditions limitantes de phosphore, le substrat excĂ©dentaire est utilisĂ© pour la production de PHA. L inhibition par les acides se traduit par une diminution des capacitĂ©s de biosynthĂšse de la biomasse et des PHA entrainant une rĂ©duction de l assimilation du carbone puis une diminution des rendements de conversion. D autre part la sensibilitĂ© d un systĂšme continu Ă  un excĂšs de substrat dĂ©pend du point de fonctionnement choisi : plus il est optimal en termes de vitesse, moins le systĂšme est robuste. L acide propionique est trĂšs inhibiteur comparĂ© aux autres acides Ă©tudiĂ©s (dĂšs 3-4 mM contre 30-40 mM). Il n agit pas simplement via une accumulation excessive dans le cytoplasme mais il exerce Ă©galement une inhibition spĂ©cifique des voies mĂ©taboliques.Un antagonisme entre les substrats (acide acĂ©tique et butyrique) a Ă©tĂ© constatĂ© et expliquĂ© grĂące Ă  une analyse des flux mĂ©taboliques. L acide acĂ©tique est assimilĂ© prĂ©fĂ©rentiellement pour produire la biomasse, l Ă©nergie et les cofacteurs nĂ©cessaires Ă  la production de PHA, alors que l acide butyrique est utilisĂ© pour la synthĂšse de PHB. La proportion maximale d acide acĂ©tique admise dans l alimentation en fonction des conditions fixĂ©es en rĂ©gime permanent est calculĂ©e et peut ĂȘtre limitĂ©e Ă  40% du carbone.Enfin il a Ă©tĂ© dĂ©terminĂ© que si une croissance rĂ©siduelle est assurĂ©e grĂące Ă  un apport en phosphore, le pourcentage maximal d HV dans le polymĂšre dĂ©pend du taux d acide propionique dans l alimentation et ne peux dĂ©passer 33 +- 5% sur acide propionique pur. Par contre, si aucune croissance rĂ©siduelle n est assurĂ©e, il est possible de convertir l acide propionique en motifs d HV uniquementReserve Biopolymer (PolyHydroxyAlkanoates or PHA) accumulation by the strain Cupriavidus necator, from Volatile Fatty Acids (VFA, like butyric acid, propionic acid and acetic acid) was investigated. This production is induced by a phosphorus limitation. For this type of substrates, performances reached during cultures are among the best listed in the literature: up to 66 g.L-1 of total biomass with 88% (w/w) of PHB PolyHydroxyButyrate- or PHB-co-HV -PolyHydroxyButyrate-co-HydroxyValerate- with a HV content up to 52 Mole%.For each carbon source, kinetic and stoechiometric characterization has been carried out thanks to Fed-Batch cultures with non-limiting and non-inhibitory carbon feed. It has been established:- a maximal growth rate of 0,33 h-1 for the three acid investigated- a relationship between specific PHA production rate and growth rate which is set by the availability and production flux of NADPH2. For growth rate above 0,05 h-1, there is an inverse coupling. For growth rate under 0,05 h-1, there is a partial coupling.- an optimum of 0,35 Cmole.Cmole-1.h-1 is associated with a growth rate of 0,05 h-1.- if a low residual growth rate is maintained, an improvement of PHB production is recorded in terms of specific production rate and yieldsThe response of the strain to an excess of acid substrate was characterized through the investigation of transient state induced by pulsed addition of substrate during continuous cultures stabilized in steady state. It was shown that in excess of phosphorus, when there is a substrate excess, the strain is unable to quickly adapt its growth rate, so the excess is directed to PHA production whose ways seem to be more easily mobilized. Under phosphorus limitation, an excess of substrate is used for PHA production. Acid inhibition results in a decrease in biomass and PHA production capacity which leads to a decrease in carbon assimilation and conversion yields. The sensitivity of a continuous system to an excess of substrate depends on the chosen operating point: the more it is optimal in terms of specific production rate, the less the system is robust. Propionic acid is highly inhibitory compared to the other acids studied (from 3-4 mM versus 30-40 mM). It does not act only via an excessive accumulation in the cytoplasm but also exerts a specific inhibition of metabolic pathways.An antagonism between substrates (acetic and butyric acid) has been established and explained thanks to the Metabolic Flux Analysis. Acetic acid is preferentially used to produce biomass, energy and cofactors for PHA synthesis, whereas butyric acid is used to product PHB. According to the conditions set during steady state, maximal content of acetic acid admitted in the feed can be calculated. It can be limited to 40% of the carbon in the feed.Finally if a growth rate is maintained thanks to a phosphorus supply, the maximal HV content in polymer is function of propionic acid in the feed and cannot exceed 33 +- 5 Mole% on pure propionic acid. Conversely, if there is no residual growth, a total conversion of propionic acid into HV is allowedTOULOUSE-INSA-Bib. electronique (315559905) / SudocSudocFranceF

    Poly-Hydroxy-Alkanoates production potentialities by Cupriavidus necator from volatile fatty acids : kinetic and metabolic studies

    No full text
    L’accumulation de biopolymĂšre de rĂ©serve (PolyHydroxyAlcanoates ou PHA) par la souche Cupriavidus necator, Ă  partir de substrats de type acides gras volatils (acide butyrique, acide propionique et acide acĂ©tique) a Ă©tĂ© Ă©tudiĂ©e. Elle est induite par une limitation phosphore. Les performances atteintes lors des cultures se situent parmi les meilleures de la littĂ©rature pour ce type de substrat : jusqu’à 66 g.L-1 de biomasse totale avec un pourcentage d’accumulation massique de 88% en PHB –PolyHydroxyButyrate- ou en PHB-co-HV -PolyHydroxyButyrate-co-HydroxyValerate- comportant jusqu’à 52% de motifs d’HV.Pour chaque source carbonĂ©e, une caractĂ©risation cinĂ©tique et stƓchiomĂ©trique de la souche a Ă©tĂ© rĂ©alisĂ©e en l’absence d’effets inhibiteurs dus aux substrats acides grĂące Ă  des cultures de type Fed-Batch avec des apports non limitants et non inhibiteurs en carbone. Il a Ă©tĂ© dĂ©gagĂ© :- un taux de croissance maximal de la souche de 0,33 h-1 pour les trois acides Ă©tudiĂ©s- une relation entre vitesse spĂ©cifique de production de PHA et taux de croissance fixĂ©e par la disponibilitĂ© et les flux de production de NADPH2 avec un dĂ©couplage inverse pour les taux de croissance supĂ©rieurs Ă  0,05 h-1 et un couplage partiel pour les taux de croissance infĂ©rieurs- un optimum de 0,35 Cmole.Cmole-1.h-1, associĂ© Ă  un taux de croissance de l’ordre de 0,05 h-1.- une amĂ©lioration de la production de PHB en termes de vitesses spĂ©cifiques mais Ă©galement en termes de rendements si une faible croissance rĂ©siduelle est maintenueLa rĂ©ponse de la souche Ă  un excĂšs de substrat acide a Ă©tĂ© caractĂ©risĂ©e via l’étude de rĂ©gimes transitoires induits par des pulses sur des cultures continues prĂ©alablement stabilisĂ©es en rĂ©gime permanent. Il a Ă©tĂ© montrĂ© qu’en excĂšs de phosphore, face Ă  un brusque excĂšs de substrat, la souche est incapable d’adapter rapidement son taux de croissance. L’excĂšs est donc dirigĂ© vers la production de PHA dont les voies sont plus rapidement mobilisables. En conditions limitantes de phosphore, le substrat excĂ©dentaire est utilisĂ© pour la production de PHA. L’inhibition par les acides se traduit par une diminution des capacitĂ©s de biosynthĂšse de la biomasse et des PHA entrainant une rĂ©duction de l’assimilation du carbone puis une diminution des rendements de conversion. D’autre part la sensibilitĂ© d’un systĂšme continu Ă  un excĂšs de substrat dĂ©pend du point de fonctionnement choisi : plus il est optimal en termes de vitesse, moins le systĂšme est robuste. L’acide propionique est trĂšs inhibiteur comparĂ© aux autres acides Ă©tudiĂ©s (dĂšs 3-4 mM contre 30-40 mM). Il n’agit pas simplement via une accumulation excessive dans le cytoplasme mais il exerce Ă©galement une inhibition spĂ©cifique des voies mĂ©taboliques.Un antagonisme entre les substrats (acide acĂ©tique et butyrique) a Ă©tĂ© constatĂ© et expliquĂ© grĂące Ă  une analyse des flux mĂ©taboliques. L’acide acĂ©tique est assimilĂ© prĂ©fĂ©rentiellement pour produire la biomasse, l’énergie et les cofacteurs nĂ©cessaires Ă  la production de PHA, alors que l’acide butyrique est utilisĂ© pour la synthĂšse de PHB. La proportion maximale d’acide acĂ©tique admise dans l’alimentation en fonction des conditions fixĂ©es en rĂ©gime permanent est calculĂ©e et peut ĂȘtre limitĂ©e Ă  40% du carbone.Enfin il a Ă©tĂ© dĂ©terminĂ© que si une croissance rĂ©siduelle est assurĂ©e grĂące Ă  un apport en phosphore, le pourcentage maximal d’HV dans le polymĂšre dĂ©pend du taux d’acide propionique dans l’alimentation et ne peux dĂ©passer 33 ± 5% sur acide propionique pur. Par contre, si aucune croissance rĂ©siduelle n’est assurĂ©e, il est possible de convertir l’acide propionique en motifs d’HV uniquementReserve Biopolymer (PolyHydroxyAlkanoates or PHA) accumulation by the strain Cupriavidus necator, from Volatile Fatty Acids (VFA, like butyric acid, propionic acid and acetic acid) was investigated. This production is induced by a phosphorus limitation. For this type of substrates, performances reached during cultures are among the best listed in the literature: up to 66 g.L-1 of total biomass with 88% (w/w) of PHB –PolyHydroxyButyrate- or PHB-co-HV -PolyHydroxyButyrate-co-HydroxyValerate- with a HV content up to 52 Mole%.For each carbon source, kinetic and stoechiometric characterization has been carried out thanks to Fed-Batch cultures with non-limiting and non-inhibitory carbon feed. It has been established:- a maximal growth rate of 0,33 h-1 for the three acid investigated- a relationship between specific PHA production rate and growth rate which is set by the availability and production flux of NADPH2. For growth rate above 0,05 h-1, there is an inverse coupling. For growth rate under 0,05 h-1, there is a partial coupling.- an optimum of 0,35 Cmole.Cmole-1.h-1 is associated with a growth rate of 0,05 h-1.- if a low residual growth rate is maintained, an improvement of PHB production is recorded in terms of specific production rate and yieldsThe response of the strain to an excess of acid substrate was characterized through the investigation of transient state induced by pulsed addition of substrate during continuous cultures stabilized in steady state. It was shown that in excess of phosphorus, when there is a substrate excess, the strain is unable to quickly adapt its growth rate, so the excess is directed to PHA production whose ways seem to be more easily mobilized. Under phosphorus limitation, an excess of substrate is used for PHA production. Acid inhibition results in a decrease in biomass and PHA production capacity which leads to a decrease in carbon assimilation and conversion yields. The sensitivity of a continuous system to an excess of substrate depends on the chosen operating point: the more it is optimal in terms of specific production rate, the less the system is robust. Propionic acid is highly inhibitory compared to the other acids studied (from 3-4 mM versus 30-40 mM). It does not act only via an excessive accumulation in the cytoplasm but also exerts a specific inhibition of metabolic pathways.An antagonism between substrates (acetic and butyric acid) has been established and explained thanks to the Metabolic Flux Analysis. Acetic acid is preferentially used to produce biomass, energy and cofactors for PHA synthesis, whereas butyric acid is used to product PHB. According to the conditions set during steady state, maximal content of acetic acid admitted in the feed can be calculated. It can be limited to 40% of the carbon in the feed.Finally if a growth rate is maintained thanks to a phosphorus supply, the maximal HV content in polymer is function of propionic acid in the feed and cannot exceed 33 ± 5 Mole% on pure propionic acid. Conversely, if there is no residual growth, a total conversion of propionic acid into HV is allowe

    Isopropanol production with engineered Cupriavidus necator as bioproduction platform

    No full text
    Alleviating our society’s dependence on petroleum-based chemicals has been highly emphasized due to fossil fuel shortages and increasing greenhouse gas emissions. Isopropanol is a molecule of high potential to replace some petroleum-based chemicals, which can be produced through biological platforms from renewable waste carbon streams such as carbohydrates, fatty acids, or CO2. In this study, for the first time, the heterologous expression of engineered isopropanol pathways were evaluated in a Cupriavidus necator strain Re2133, which was incapable of producing poly-3-hydroxybutyrate [P(3HB)]. These synthetic production pathways were rationally designed through codon optimization, gene placement, and gene dosage in order to efficiently divert carbon flow from P(3HB) precursors toward isopropanol. Among the constructed pathways, Re2133/pEG7c overexpressing native C. necator genes encoding a ÎČ-ketothiolase, a CoA-transferase, and codon-optimized Clostridium genes encoding an acetoacetate decarboxylase and an alcohol dehydrogenase produced up to 3.44 g l[superscript -1] isopropanol in batch culture, from fructose as a sole carbon source, with only 0.82 g l[superscript -1] of biomass. The intrinsic performance of this strain (maximum specific production rate 0.093 g g[superscript -1] h[superscript -1], yield 0.32 Cmole Cmole[superscript -1]) corresponded to more than 60 % of the respective theoretical performance. Moreover, the overall isopropanol production yield (0.24 Cmole Cmole[superscript -1]) and the overall specific productivity (0.044 g g[superscript -1] h[superscript -1]) were higher than the values reported in the literature to date for heterologously engineered isopropanol production strains in batch culture. Strain Re2133/pEG7c presents good potential for scale-up production of isopropanol from various substrates in high cell density cultures.United States. Dept. of EnergyMIT-France Seed FundUnited States. Advanced Research Projects Agency-EnergyFrance. Ministère de l'éducation nationale, de l'enseignement supérieur et de la recherche (Post-Doctoral grant)Centre National de la Recherche Scientifique (France

    Isopropanol production with engineered Cupriavidus necator as bioproduction platform

    No full text
    Alleviating our society's dependence on petroleum-based chemicals has been highly emphasized due to fossil fuel shortages and increasing greenhouse gas emissions. Isopropanol is a molecule of high potential to replace some petroleum-based chemicals, which can be produced through biological platforms from renewable waste carbon streams such as carbohydrates, fatty acids, or CO2. In this study, for the first time, the heterologous expression of engineered isopropanol pathways were evaluated in a Cupriavidus necator strain Re2133, which was incapable of producing poly-3-hydroxybutyrate [P(3HB)]. These synthetic production pathways were rationally designed through codon optimization, gene placement, and gene dosage in order to efficiently divert carbon flow from P(3HB) precursors toward isopropanol. Among the constructed pathways, Re2133/pEG7c overexpressing native C. necator genes encoding a beta-ketothiolase, a CoA-transferase, and codon-optimized Clostridium genes encoding an acetoacetate decarboxylase and an alcohol dehydrogenase produced up to 3.44 g l(-1) isopropanol in batch culture, from fructose as a sole carbon source, with only 0.82 g l(-1) of biomass. The intrinsic performance of this strain (maximum specific production rate 0.093 g g(-1) h(-1), yield 0.32 Cmole Cmole(-1)) corresponded to more than 60 % of the respective theoretical performance. Moreover, the overall isopropanol production yield (0.24 Cmole Cmole(-1)) and the overall specific productivity (0.044 g g(-1) h(-1)) were higher than the values reported in the literature to date for heterologously engineered isopropanol production strains in batch culture. Strain Re2133/pEG7c presents good potential for scale-up production of isopropanol from various substrates in high cell density cultures

    A Catalytically Competent Terpene Synthase Inferred Using Ancestral Sequence Reconstruction Strategy

    No full text
    LipPolGreen platform (www.supagro.fr/plantlippol-green)On the basis of bioinformatic analysis of 137 putative and characterized bacterial terpene synthases (TS), we applied ancestral reconstruction strategy to design a biosynthetic protein sequence (AncCL1). We biochemically confirmed its catalytic competence and product profile. This enzyme catalyzes not only epi-isozizaene (minor product) but also epi-zizaene (major product) formation. We compared AncCL1 with two related TS to allow a more detailed insight into the product specificity determinants. In the future, the presented method will be useful for engineering biosynthetic TS and to elucidate the function of unknown enzymes

    Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production

    No full text
    We previously reported a metabolic engineering strategy to develop an isopropanol producing strain of Cupriavidus necator leading to production of 3.4gL-1 isopropanol. In order to reach higher titers, isopropanol toxicity to the cells has to be considered. A toxic effect of isopropanol on the growth of C. necator has been indeed observed above a critical value of 15gL-1. GroESL chaperones were first searched and identified in the genome of C. necator. Native groEL and groES genes from C. necator were over-expressed in a strain deleted for PHA synthesis. We demonstrated that over-expressing groESL genes led to a better tolerance of the strain towards exogenous isopropanol. GroESL genes were then over-expressed within the best engineered isopropanol producing strain. A final isopropanol concentration of 9.8gL-1 was achieved in fed-batch culture on fructose as the sole carbon source (equivalent to 16gL-1 after taking into account evaporation). Cell viability was slightly improved by the chaperone over-expression, particularly at the end of the fermentation when the isopropanol concentration was the highest. Moreover, the strain over-expressing the chaperones showed higher enzyme activity levels of the 2 heterologous enzymes (acetoacetate carboxylase and alcohol dehydrogenase) of the isopropanol synthetic operon, translating to a higher specific production rate of isopropanol at the expense of the specific production rate of acetone. Over-expressing the native chaperones led to a 9-18% increase in the isopropanol yield on fructose

    Impact of nitrogen deficiency on succinic acid production by engineered strains of Yarrowia lipolytica

    No full text
    International audienceYarrowia lipolytica strains PGC01003 and PGC202 engineered for succinic acid production were studied and compared to the wild type strain W29. For the first time, these two strains were characterized in a chemically defined medium. Strain growth and organic acid production were investigated in fed-batch mode with glycerol as carbon and energy source. This study evaluated the impact of nitrogen deficiency strategy to redirect carbon flux toward succinic acid synthesis. Strain PGC01003 produced 19 g L−1 succinic acid with an overall yield of 0.23 g g−1 and an overall productivity of 0.23 g L−1 h−1, while strain PGC202 produced 33 g L−1 succinic acid with an overall yield of 0.12 g g−1 and a productivity of 0.57 g L−1 h−1. Nitrogen limitation effectively stopped biomass growth and increased succinic acid yield of PGC01003 and PGC202 by 18 % and 62 %, respectively. However, the specific succinic acid production rate was reduced by 77 % and 66 %, respectively

    Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in [i]Cupriavidus necator[/i]

    No full text
    Properties of polyhydroxybutyrate-co-hydroxyvalerate (P(3HB-co-3HV)) depend on their 3HV content. 3HV can be produced by [i]Cupriavidus necator[/i] from propionic acid. Few studies explored carbon distribution and dynamics of 3HV and 3HB monomers production, and none of them have been done with phosphorus as limiting nutrient. In this study, fed-batch cultures of [i]C. necator[/i] with propionic acid, as sole carbon source or mixed with butyric acid, were performed. Phosphorus deficiency allowed sustaining 3HV production rate and decreasing 3HB production rate, leading to an instant production of up to 100% of 3HV. When a residual growth is sustained by a phosphorus feeding, the maximum 3HV percentage produced from propionic acid is limited to 33% (Mole. Mole (1)). The association of a second carbon source like butyric acid lead to higher conversion of propionic acid into 3HV. This study showed the importance of the limiting nutrient and of the culture strategy to get the appropriate product

    Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator

    No full text
    In this study a complementary modeling and experimental approach was used to explore how growth controls the NADPH generation and availability, and the resulting impact on PHB (polyhydroxybutyrate) yields and kinetics. The results show that the anabolic demand allowed the NADPH production through the Entner-Doudoroff (ED) pathway, leading to a high maximal theoretical PHB production yield of 0.89 Cmole Cmole(-1); whereas without biomass production, NADPH regeneration is only possible via the isocitrate dehydrogenase leading to a theoretical yield of 0.67 Cmole Cmole(-1). Furthermore, the maximum specific rate of NADPH produced at maximal growth rate (to fulfil biomass requirement) was found to be the maximum set in every conditions, which by consequence determines the maximal PHB production rate. These results imply that sustaining a controlled residual growth improves the PHB specific production rate without altering production yield. (C) 2013 Elsevier Ltd. All rights reserved
    corecore