272 research outputs found

    MeV neutrinos in double beta decay

    Get PDF
    The effect of Majorana neutrinos in the MeV mass range on the double beta decay of various isotopes is studied on pure phenomenological arguments. By using only experimental half life data, limits on the mixing parameter Ueh2U_{eh}^2 of the order 107^{-7} can be derived. Also the possible achievements of upcoming experiments and some consequences are outlined.Comment: 7 pages, 6 uudecoded EPS-figure

    Overlap of QRPA states based on ground states of different nuclei --mathematical properties and test calculations--

    Get PDF
    The overlap of the excited states in quasiparticle random-phase approximation (QRPA) is calculated in order to simulate the overlap of the intermediate nuclear states of the double-beta decay. Our basic idea is to use the like-particle QRPA with the aid of the closure approximation and calculate the overlap as rigorously as possible by making use of the explicit equation of the QRPA ground state. The formulation is shown in detail, and the mathematical properties of the overlap matrix are investigated. Two test calculations are performed for relatively light nuclei with the Skyrme and volume delta-pairing energy functionals. The validity of the truncations used in the calculation is examined and confirmed.Comment: 17 pages, 15 figures, full paper following arXiv:1205.5354 and Phys. Rev. C 86 (2012) 021301(R

    Global Hopf bifurcation in the ZIP regulatory system

    Get PDF
    Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been modeled by a system of ordinary differential equations based on the uptake of zinc, expression of a transporter protein and the interaction between an activator and inhibitor. For certain parameter choices the steady state of this model becomes unstable upon variation in the external zinc concentration. Numerical results show periodic orbits emerging between two critical values of the external zinc concentration. Here we show the existence of a global Hopf bifurcation with a continuous family of stable periodic orbits between two Hopf bifurcation points. The stability of the orbits in a neighborhood of the bifurcation points is analyzed by deriving the normal form, while the stability of the orbits in the global continuation is shown by calculation of the Floquet multipliers. From a biological point of view, stable periodic orbits lead to potentially toxic zinc peaks in plant cells. Buffering is believed to be an efficient way to deal with strong transient variations in zinc supply. We extend the model by a buffer reaction and analyze the stability of the steady state in dependence of the properties of this reaction. We find that a large enough equilibrium constant of the buffering reaction stabilizes the steady state and prevents the development of oscillations. Hence, our results suggest that buffering has a key role in the dynamics of zinc homeostasis in plant cells.Comment: 22 pages, 5 figures, uses svjour3.cl

    Microscopic theories of neutrino-^{12}C reactions

    Get PDF
    In view of the recent experiments on neutrino oscillations performed by the LSND and KARMEN collaborations as well as of future experiments, we present new theoretical results of the flux averaged 12C(νe,e)12N^{12}C(\nu_e,e^-)^{12}N and 12C(νμ,μ)12N^{12}C(\nu_{\mu},{\mu}^-)^{12}N cross sections. The approaches used are charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the Shell Model. With a large-scale shell model calculation the exclusive cross sections are in nice agreement with the experimental values for both reactions. The inclusive cross section for νμ\nu_{\mu} coming from the decay-in-flight of π+\pi^+ is 15.2×1040cm215.2 \times 10^{-40} cm^2 to be compared to the experimental value of 12.4±0.3±1.8×1040cm212.4 \pm 0.3 \pm 1.8 \times 10^{-40} cm^2, while the one due to νe\nu_{e} coming from the decay-at-rest of μ+\mu^+ is 16.4×1042cm216.4 \times 10^{-42} cm^2 which agrees within experimental error bars with the measured values. The shell model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one. This is mainly due to the different kind of correlations taken into account in the calculation of the spin modes and partially due to the shell-model configuration basis which is not large enough, as we show using arguments based on sum-rules.Comment: 17 pages, latex, 5 figure

    The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann-Robertson-Walker Universe

    Full text link
    We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and separate the spatial and time variables. In the case of a closed universe, the spatial dependence is solved explicitly, giving rise to a discrete set of solutions. We compute the probability integral and analyze a space-time normalization integral. This analysis allows us to introduce the fermionic projector in a closed Friedmann-Robertson-Walker geometry and to specify its global normalization as well as its local form.Comment: 22 pages, LaTeX, sign error in equation (3.7) correcte

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende

    Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population

    Get PDF
    Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe

    Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants

    Get PDF
    Deoxymugineic acid (DMA) is a member of the mugineic acid family phytosiderophores (MAs), which are natural metal chelators produced by graminaceous plants. Rice secretes DMA in response to Fe deficiency to take up Fe in the form of Fe(III)–MAs complex. In contrast with barley, the roots of which secrete MAs in response to Zn deficiency, the amount of DMA secreted by rice roots was slightly decreased under conditions of low Zn supply. There was a concomitant increase in endogenous DMA in rice shoots, suggesting that DMA plays a role in the translocation of Zn within Zn-deficient rice plants. The expression of OsNAS1 and OsNAS2 was not increased in Zn-deficient roots but that of OsNAS3 was increased in Zn-deficient roots and shoots. The expression of OsNAAT1 was also increased in Zn-deficient roots and dramatically increased in shoots; correspondingly, HPLC analysis was unable to detect nicotianamine in Zn-deficient shoots. The expression of OsDMAS1 was increased in Zn-deficient shoots. Analyses using the positron-emitting tracer imaging system (PETIS) showed that Zn-deficient rice roots absorbed less 62Zn-DMA than 62Zn2+. Importantly, supply of 62Zn-DMA rather than 62Zn2+ increased the translocation of 62Zn into the leaves of Zn-deficient plants. This was especially evident in the discrimination center (DC). These results suggest that DMA in Zn-deficient rice plants has an important role in the distribution of Zn within the plant rather than in the absorption of Zn from the soil
    corecore