3,235 research outputs found
Luminosity Functions of Elliptical Galaxies at z < 1.2
The luminosity functions of E/S0 galaxies are constructed in 3 different
redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.2), using the data
from the Hubble Space Telescope Medium Deep Survey (HST MDS) and other HST
surveys. These independent luminosity functions show the brightening in the
luminosity of E/S0s by about 0.5~1.0 magnitude at z~1, and no sign of
significant number evolution.
This is the first direct measurement of the luminosity evolution of E/S0
galaxies, and our results support the hypothesis of a high redshift of
formation (z > 1) for elliptical galaxies, together with weak evolution of the
major merger rate at z < 1.Comment: To be published in ApJ Letters, 4 pages, AAS Latex, 4 figures, and 2
table
A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2
We have performed a search for halo white dwarfs as high proper motion
objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify
24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper
motion objects are identified as strong white dwarf candidates on the basis of
their position in a reduced proper motion diagram. We create a model of the
Milky Way thin disk, thick disk and stellar halo and find that this sample of
white dwarfs is clearly an excess above the < 2 detections expected from these
known stellar populations. The origin of the excess signal is less clear.
Possibly, the excess cannot be explained without invoking a fourth galactic
component: a white dwarf dark halo. We present a statistical separation of our
sample into the four components and estimate the corresponding local white
dwarf densities using only the directly observable variables, V, V-I, and mu.
For all Galactic models explored, our sample separates into about 3 disk white
dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin
and thick disk and the stellar and dark halo, and the subsequent calculation of
the local densities are sensitive to the input parameters of our model for each
Galactic component. Using the lowest mean mass model for the dark halo we find
a 7% white dwarf halo and six times the canonical value for the thin disk white
dwarf density (at marginal statistical significance), but possible systematic
errors due to uncertainty in the model parameters likely dominate these
statistical error bars. The white dwarf halo can be reduced to around 1.5% of
the halo dark matter by changing the initial mass function slightly. The local
thin disk white dwarf density in our solution can be made consistent with the
canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion
expande
The Morphologically Divided Redshift Distribution of Faint Galaxies
We have constructed a morphologically divided redshift distribution of faint
field galaxies using a statistically unbiased sample of 196 galaxies brighter
than I = 21.5 for which detailed morphological information (from the Hubble
Space Telescope) as well as ground-based spectroscopic redshifts are available.
Galaxies are classified into 3 rough morphological types according to their
visual appearance (E/S0s, Spirals, Sdm/dE/Irr/Pec's), and redshift
distributions are constructed for each type. The most striking feature is the
abundance of low to moderate redshift Sdm/dE/Irr/Pec's at I < 19.5. This
confirms that the faint end slope of the luminosity function (LF) is steep
(alpha < -1.4) for these objects. We also find that Sdm/dE/Irr/Pec's are fairly
abundant at moderate redshifts, and this can be explained by strong luminosity
evolution. However, the normalization factor (or the number density) of the LF
of Sdm/dE/Irr/Pec's is not much higher than that of the local LF of
Sdm/dE/Irr/Pec's. Furthermore, as we go to fainter magnitudes, the abundance of
moderate to high redshift Irr/Pec's increases considerably. This cannot be
explained by strong luminosity evolution of the dwarf galaxy populations alone:
these Irr/Pec's are probably the progenitors of present day ellipticals and
spiral galaxies which are undergoing rapid star formation or merging with their
neighbors. On the other hand, the redshift distributions of E/S0s and spirals
are fairly consistent those expected from passive luminosity evolution, and are
only in slight disagreement with the non-evolving model.Comment: 11 pages, 4 figures (published in ApJ
A Slow Merger History of Field Galaxies Since z~1
Using deep infrared observations conducted with the CISCO imager on the
Subaru Telescope, we investigate the field-corrected pair fraction and the
implied merger rate of galaxies in redshift survey fields with Hubble Space
Telescope imaging. In the redshift interval, 0.5 < z < 1.5, the fraction of
infrared-selected pairs increases only modestly with redshift to 7% +- 6% at
z~1. This is nearly a factor of three less than the fraction, 22% +- 8%,
determined using the same technique on HST optical images and as measured in a
previous similar study. Tests support the hypothesis that optical pair
fractions at z~1 are inflated by bright star-forming regions that are unlikely
to be representative of the underlying mass distribution. By determining
stellar masses for the companions, we estimate the mass accretion rate
associated with merging galaxies. At z~1, we estimate this to be 2x10^{9 +-
0.2} solar masses per galaxy per Gyr. Although uncertainties remain, our
results suggest that the growth of galaxies via the accretion of pre-existing
fragments remains as significant a phenomenon in the redshift range studied as
that estimated from ongoing star formation in independent surveys.Comment: 5 pages, accepted for publication in ApJ Letter
Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship Between the Stellar and Total Masses of Disk Galaxies since z=1
Using a combination of Keck spectroscopy and near-infrared imaging, we
investigate the K-band and stellar mass Tully-Fisher relation for 101 disk
galaxies at 0.2 < z < 1.2, with the goal of placing the first observational
constraints on the assembly history of halo and stellar mass. Our main result
is a lack of evolution in either the K-band or stellar mass Tully-Fisher
relation from z = 0 - 1.2. Furthermore, although our sample is not
statistically complete, we consider it suitable for an initial investigation of
how the fraction of total mass that has condensed into stars is distributed
with both redshift and total halo mass. We calculate stellar masses from
optical and near-infrared photometry and total masses from maximum rotational
velocities and disk scale lengths, utilizing a range of model relationships
derived analytically and from simulations. We find that the stellar/total mass
distribution and stellar-mass Tully-Fisher relation for z > 0.7 disks is
similar to that at lower redshift, suggesting that baryonic mass is accreted by
disks along with dark matter at z < 1, and that disk galaxy formation at z < 1
is hierarchical in nature. We briefly discuss the evolutionary trends expected
in conventional structure formation models and the implications of extending
such a study to much larger samples.Comment: ApJ, in press, 9 page
A nonlinear detection algorithm for periodic signals in gravitational wave detectors
We present an algorithm for the detection of periodic sources of
gravitational waves with interferometric detectors that is based on a special
symmetry of the problem: the contributions to the phase modulation of the
signal from the earth rotation are exactly equal and opposite at any two
instants of time separated by half a sidereal day; the corresponding is true
for the contributions from the earth orbital motion for half a sidereal year,
assuming a circular orbit. The addition of phases through multiplications of
the shifted time series gives a demodulated signal; specific attention is given
to the reduction of noise mixing resulting from these multiplications. We
discuss the statistics of this algorithm for all-sky searches (which include a
parameterization of the source spin-down), in particular its optimal
sensitivity as a function of required computational power. Two specific
examples of all-sky searches (broad-band and narrow-band) are explored
numerically, and their performances are compared with the stack-slide technique
(P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
New "Einstein Cross" Gravitational Lens Candidates in HST WFPC2 Survey Images
We report the serendipitous discovery of ``Einstein cross'' gravitational
lens candidates using the Hubble Space Telescope. We have so far discovered two
good examples of such lenses, each in the form of four faint blue images
located in a symmetric configuration around a red elliptical galaxy. The high
resolution of HST has facilitated the discovery of this optically selected
sample of faint lenses with small (~1 arcsec) separations between the (I ~
25-27) lensed components and the much brighter (I ~ 19-22) lensing galaxies.
The sample has been discovered in the routine processing of HST fields through
the Medium Deep Survey pipeline, which fits simple galaxy models to broad band
filter images of all objects detected in random survey fields using WFPC2.
We show that the lens configuration can be modeled using the gravitational
field potential of a singular isothermal ellipsoidal mass distribution. With
this model the lensing potential is very similar, both in ellipticity and
orientation, to the observed light distribution of the elliptical galaxy, as
would occur when stars are a tracer population. The model parameters and
associated errors have been derived by 2-dimensional analysis of the observed
images. The maximum likelihood procedure iteratively converges simultaneously
on the model for the lensing elliptical galaxy and the source of the lensed
components. A systematic search is in progress for other gravitational lens
candidates in the HST Medium Deep Survey. This should eventually lead to a good
statistical estimate for lensing probabilities, and enable us to probe the
cosmological component of the observed faint blue galaxy population.Comment: Accepted for Astrophysical Journal Letters, 1995 November 1 LaTex, 10
pages, includes 2 figures 1 table, tarred gzip uuencoded using uufiles scrip
Cypress: A High Yielding, High Quality Long-Grain Rice Variety
Cypress is a high-yielding, early-maturing, semidwarf, long-grain rice variety with excellent grain quality. This bulletin includes information on the history, characteristics, cultural management and pest reaction of Cypress.https://digitalcommons.lsu.edu/agcenter_bulletins/1011/thumbnail.jp
Measurement of [OIII] Emission in Lyman Break Galaxies
Measurements of [OIII] emission in Lyman Break galaxies (LBGs) at z>3 are
presented. Four galaxies were observed with narrow-band filters using the
Near-IR Camera on the Keck I 10-m telescope. A fifth galaxy was observed
spectroscopically during the commissioning of NIRSPEC, the new infrared
spectrometer on Keck II. The emission-line spectrum is used to place limits on
the metallicity. Comparing these new measurements with others available from
the literature, we find that strong oxygen emission in LBGs may suggest
sub-solar metallicity for these objects. The [OIII]5007 line is also used to
estimate the star formation rate (SFR) of the LBGs. The inferred SFRs are
higher than those estimated from the UV continuum, and may be evidence for dust
extinction.Comment: 25 pages, including 6 figures. Accepted for publication in Ap
Making Code Voting Secure against Insider Threats using Unconditionally Secure MIX Schemes and Human PSMT Protocols
Code voting was introduced by Chaum as a solution for using a possibly
infected-by-malware device to cast a vote in an electronic voting application.
Chaum's work on code voting assumed voting codes are physically delivered to
voters using the mail system, implicitly requiring to trust the mail system.
This is not necessarily a valid assumption to make - especially if the mail
system cannot be trusted. When conspiring with the recipient of the cast
ballots, privacy is broken.
It is clear to the public that when it comes to privacy, computers and
"secure" communication over the Internet cannot fully be trusted. This
emphasizes the importance of using: (1) Unconditional security for secure
network communication. (2) Reduce reliance on untrusted computers.
In this paper we explore how to remove the mail system trust assumption in
code voting. We use PSMT protocols (SCN 2012) where with the help of visual
aids, humans can carry out addition correctly with a 99\% degree of
accuracy. We introduce an unconditionally secure MIX based on the combinatorics
of set systems.
Given that end users of our proposed voting scheme construction are humans we
\emph{cannot use} classical Secure Multi Party Computation protocols.
Our solutions are for both single and multi-seat elections achieving:
\begin{enumerate}[i)]
\item An anonymous and perfectly secure communication network secure against
a -bounded passive adversary used to deliver voting,
\item The end step of the protocol can be handled by a human to evade the
threat of malware. \end{enumerate} We do not focus on active adversaries
- …