34 research outputs found

    Shwartzman reaction after human renal homotransplantation.

    Get PDF
    In three human recipients, five renal homografts were destroyed within a few minutes to hours after their revascularization in the new host. The kidneys, removed one to 54 days later, had cortical necrosis. The major vessels were patent, but the arterioles and glomeruli were the site of fibrin deposition. There was little or no fixation of host immunoglobulins in the homografts. The findings were characteristic of a generalized Shwartzman reaction. Although the cause (or causes) of the Shwartzman reaction in our patients is not known, they may have been conditioned by the bacterial contamination and hemolysis that often attend hemodialysis, by immunosuppression and by the transplantation itself. Some of the patients have preformed lymphocytotoxic antibodies. Thus, certain patients may be predisposed. High-risk patients should be recognized and treated prophylactically with anticoagulants

    Hubble Space Telescope Planetary Camera Images of NGC 1316

    Full text link
    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC 1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \sim 2.0 \times 10^3 L_{\sun} pc3^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of 2.2±0.2\sim 2.2 \pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \times 10^9 M_{\sun}, an increase in the stellar mass-to-light ratio by at least a factor of two for the inner few arcseconds, or perhaps increasing radial orbit anisotropy towards the center. The mass-to-light ratio run in the center of NGC 1316 resembles that of many other giant ellipticals, some of which are known from other evidence to harbor central massive dark objects (MDO's). We also examine twenty globular clusters associated with NGC 1316 and report their brightnesses, colors, and limits on tidal radii. The brightest cluster has a luminosity of 9.9 \times 10^6 L_{\sun} (MV=12.7M_V = -12.7), and the faintest detectable cluster has a luminosity of 2.4 \times 10^5 L_{\sun} (MV=8.6M_V = -8.6). The globular clusters are just barely resolved, but their core radii are too small to be measured. The tidal radii in this region appear to be \le 35 pc. Although this galaxy seems to have undergone a substantial merger in the recent past, young globular clusters are not detected.Comment: 21 pages, latex, postscript figures available at ftp://delphi.umd.edu/pub/outgoing/eshaya/fornax

    Age and distraction are determinants of performance on a novel visual search task in aged Beagle dogs

    Get PDF
    Aging has been shown to disrupt performance on tasks that require intact visual search and discrimination abilities in human studies. The goal of the present study was to determine if canines show age-related decline in their ability to perform a novel simultaneous visual search task. Three groups of canines were included: a young group (N = 10; 3 to 4.5 years), an old group (N = 10; 8 to 9.5 years), and a senior group (N = 8; 11 to 15.3 years). Subjects were first tested for their ability to learn a simple two-choice discrimination task, followed by the visual search task. Attentional demands in the task were manipulated by varying the number of distracter items; dogs received an equal number of trials with either zero, one, two, or three distracters. Performance on the two-choice discrimination task varied with age, with senior canines making significantly more errors than the young. Performance accuracy on the visual search task also varied with age; senior animals were significantly impaired compared to both the young and old, and old canines were intermediate in performance between young and senior. Accuracy decreased significantly with added distracters in all age groups. These results suggest that aging impairs the ability of canines to discriminate between task-relevant and -irrelevant stimuli. This is likely to be derived from impairments in cognitive domains such as visual memory and learning and selective attention

    Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes

    Get PDF
    Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E2 (PGE2). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE2 causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE2-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses

    Hubble Space Telescope WFPC2 Imaging of M16: Photoevaporation and Emerging Young Stellar Objects

    Get PDF
    We present Hubble Space Telescope WFPC2 images of elephant trunks in the H II region M16. There are three principle results of this study. First, the morphology and stratified ionization structure of the interface between the dense molecular material and the interior of the H II region is well understood in terms of photoionization of a photoevaporative flow. Photoionization models of an empirical density profile capture the essential features of the observations, including the extremely localized region of [S II] emission at the interface and the observed offset between emission peaks in lower and higher ionization lines. The details of this structure are found to be a sensitive function both of the density profile of the interface and of the shape of the ionizing continuum. Interpretation of the interaction of the photoevaporative flow with gas in the interior of the nebula supports the view that much of the emission from H II regions may arise in such flows. Photoionization of photoevaporative flows may provide a useful paradigm for interpreting a wide range of observations of H II regions. Second, we report the discovery of a population of small cometary globules that are being uncovered as the main bodies of the elephant trunks are dispersed. Several lines of evidence connect these globules to ongoing star formation, including the association of a number of globules with stellar objects seen in IR images of M16 or in the continuum HST images themselves. We refer to these structures as evaporating gaseous globules, or "EGGs." These appear to be the same type of object as the nebular condensations seen previously in M42. The primary difference between the two cases is that in M16 we are seeing the objects from the side, while in M42 the objects are seen more nearly face-on against the backdrop of the ionized face of the molecular cloud. We find that the "evaporating globule" interpretation naturally accounts for the properties of objects in both nebulae, while avoiding serious difficulties with the competing "evaporating disk" model previously applied to the objects in M42. More generally, we find that disk-like structures are relatively rare in either nebula. Third, the data indicate that photoevaporation may have uncovered many EGGs while the stellar objects in them were still accreting mass, thereby freezing the mass distribution of the protostars at an early stage in their evolution. We conclude that the masses of stars in the cluster environment in M16 are generally determined not by the onset of stellar winds, as in more isolated regions of star formation, but rather by disruption of the star forming environment by the nearby O stars

    The potential advantages of transplanting organs from pig to man: A transplant Surgeon's view

    No full text
    Once pig organs can be transplanted into humans, transplantation will move into a new era. There will be unlimited access to undamaged organs and cells for transplantation and, eventually, donation from deceased or live human beings will become obsolete. Furthermore, it will be possible to alleviate graft rejection, at least in part, by genetic modification of the source animal. Currently, there are three major obstacles to performing transplantations from pig to man: 1) a powerful immune barrier, 2) a potential risk of transmitting microorganisms, particularly endogenous retrovirus and 3) ethical issues related to the future recipients and to society at large
    corecore