89 research outputs found

    Mixtures in non stable Levy processes

    Get PDF
    We analyze the Levy processes produced by means of two interconnected classes of non stable, infinitely divisible distribution: the Variance Gamma and the Student laws. While the Variance Gamma family is closed under convolution, the Student one is not: this makes its time evolution more complicated. We prove that -- at least for one particular type of Student processes suggested by recent empirical results, and for integral times -- the distribution of the process is a mixture of other types of Student distributions, randomized by means of a new probability distribution. The mixture is such that along the time the asymptotic behavior of the probability density functions always coincide with that of the generating Student law. We put forward the conjecture that this can be a general feature of the Student processes. We finally analyze the Ornstein--Uhlenbeck process driven by our Levy noises and show a few simulation of it.Comment: 28 pages, 3 figures, to be published in J. Phys. A: Math. Ge

    Brownian walkers within subdiffusing territorial boundaries

    Full text link
    Inspired by the collective phenomenon of territorial emergence, whereby animals move and interact through the scent marks they deposit, we study the dynamics of a 1D Brownian walker in a random environment consisting of confining boundaries that are themselves diffusing anomalously. We show how to reduce, in certain parameter regimes, the non-Markovian, many-body problem of territoriality to the analytically tractable one-body problem studied here. The mean square displacement (MSD) of the 1D Brownian walker within subdiffusing boundaries is calculated exactly and generalizes well known results when the boundaries are immobile. Furthermore, under certain conditions, if the boundary dynamics are strongly subdiffusive, we show the appearance of an interesting non-monotonicity in the time dependence of the MSD, giving rise to transient negative diffusion.Comment: 13 pages, 4 figure

    Special Functions Related to Dedekind Type DC-Sums and their Applications

    Full text link
    In this paper we construct trigonometric functions of the sum T_{p}(h,k), which is called Dedekind type DC-(Dahee and Changhee) sums. We establish analytic properties of this sum. We find trigonometric representations of this sum. We prove reciprocity theorem of this sums. Furthermore, we obtain relations between the Clausen functions, Polylogarithm function, Hurwitz zeta function, generalized Lambert series (G-series), Hardy-Berndt sums and the sum T_{p}(h,k). We also give some applications related to these sums and functions

    Supersymmetric QCD corrections to e+etbˉHe^+e^-\to t\bar{b}H^- and the Bernstein-Tkachov method of loop integration

    Full text link
    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the Standard Model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method.Comment: 14 pages, 6 figures, accepted for publication in Phys. Rev.

    Blanche Grosswald (1952–2003)

    No full text

    On a Measure of Asymmetry of Convex Bodies

    No full text
    corecore