7,634 research outputs found

    Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera

    Get PDF
    The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes

    Design of a system to achieve diagnosis of brain lesions of suspected infectious origin from a database and a radiologic software

    Get PDF
    This Brainsupporters project aims at creating an international database including an extensive collection of radiologic images of brain lesions and the relevant clinical, laboratory and microbiological data, and a software, to highlight and differentiate the minimal alteration in the radiologic footprint related to the local alterations of brain tissue produced by each individual pathogen that will become an objective diagnostic tool. Clinical parameters will be taken into account in defining a procedure to estimate the probability that the difference between an image and a template be due to a specific pathological agent

    The puzzling X-ray continuum of the quasar MR 2251-178

    Full text link
    We report on a comprehensive X-ray spectral analysis of the nearby radio-quiet quasar MR 2251-178, based on the long-look (~ 400 ks) XMM-Newton observation carried out in November 2011. As the properties of the multiphase warm absorber (thoroughly discussed in a recent, complementary work) hint at a steep photoionizing continuum, here we investigate into the nature of the intrinsic X-ray emission of MR 2251-178 by testing several physical models. The apparent 2-10 keV flatness as well as the subtle broadband curvature can be ascribed to partial covering of the X-ray source by a cold, clumpy absorption system with column densities ranging from a fraction to several x10^23 cm^-2. As opposed to more complex configurations, only one cloud is required along the line of sight in the presence of a soft X-ray excess, possibly arising as Comptonized disc emission in the accretion disc atmosphere. On statistical grounds, even reflection with standard efficiency off the surface of the inner disc cannot be ruled out, although this tentatively overpredicts the observed ~ 14-150 keV emission. It is thus possible that each of the examined physical processes is relevant to a certain degree, and hence only a combination of high-quality, simultaneous broadband spectral coverage and multi-epoch monitoring of X-ray spectral variability could help disentangling the different contributions. Yet, regardless of the model adopted, we infer for MR 2251-178 a bolometric luminosity of ~ 5-7 x 10^45 erg/s, implying that the central black hole is accreting at ~ 15-25 per cent of the Eddington limit.Comment: 14 pages, 9 figures, 7 tables. Accepted for publication in MNRA

    Model 1738 tape recorder/reproducer. general test requirements

    Get PDF
    Test requirements of tape recorder for Mariner progra

    Artifact of the phonon-induced localization by variational calculations in the spin-boson model

    Full text link
    We present energy and free energy analyses on all variational schemes used in the spin-boson model at both T=0 and T≠0T\neq0. It is found that all the variational schemes have fail points, at where the variational schemes fail to provide a lower energy (or a lower free energy at T≠0T\neq0) than the displaced-oscillator ground state and therefore the variational ground state becomes unstable, which results in a transition from a variational ground state to a displaced oscillator ground state when the fail point is reached. Such transitions are always misidentied as crossover from a delocalized to localized phases in variational calculations, leading to an artifact of phonon-induced localization. Physics origin of the fail points and explanations for different transition behaviors with different spectral functions are found by studying the fail points of the variational schemes in the single mode case.Comment: 9 pages, 7 figure

    Designing Dirac points in two-dimensional lattices

    Full text link
    We present a framework to elucidate the existence of accidental contacts of energy bands, particularly those called Dirac points which are the point contacts with linear energy dispersions in their vicinity. A generalized von-Neumann-Wigner theorem we propose here gives the number of constraints on the lattice necessary to have contacts without fine tuning of lattice parameters. By counting this number, one could quest for the candidate of Dirac systems without solving the secular equation. The constraints can be provided by any kinds of symmetry present in the system. The theory also enables the analytical determination of k-point having accidental contact by selectively picking up only the degenerate solution of the secular equation. By using these frameworks, we demonstrate that the Dirac points are feasible in various two-dimensional lattices, e.g. the anisotropic Kagome lattice under inversion symmetry is found to have contacts over the whole lattice parameter space. Spin-dependent cases, such as the spin-density-wave state in LaOFeAs with reflection symmetry, are also dealt with in the present scheme.Comment: 15pages, 9figures (accepted to Phys. Rev. B

    Multi-Wavelength Study of Sgr A*: The Short Time Scale Variability

    Full text link
    To understand the correlation and the radiation mechanism of flare emission in different wavelength bands, we have coordinated a number of telescopes to observe SgrA* simultaneously. We focus only on one aspect of the preliminary results of our multi-wavelength observing campaigns, namely, the short time scale variability of emission from SgrA* in near-IR, X-ray and radio wavelengths. The structure function analysis indicate most of the power spectral density is detected on hourly time scales in all wavelength bands. We also report minute time scale variability at 7 and 13mm placing a strong constraint on the nature of the variable emission. The hourly time scale variability can be explained in the context of a model in which the peak frequency of emission shifts toward lower frequencies as a self-absorbed synchrotron source expands adiabatically near the acceleration site. The short time scale variability, on the other hand, places a strong constraint on the size of the emitting region. Assuming that rapid minute time scale fluctuations of the emission is optically thick in radio wavelength, light travel arguments requires relativistic particle energy, thus suggesting the presence of outflow from SgrA*.Comment: 9 pages, 4 figures, The Galactic Center: A Window on the Nuclear Environment of Disk Galaxies ASP Conference Series, 2010 eds: M. Morris, D. Q. Wang and F. Yua
    • …
    corecore