1,852 research outputs found
Convective intensification of magnetic fields in the quiet Sun
Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field B_e, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field B_p that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, “granular” motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than B_e, and the high magnetic pressure in these flux elements leads to their being partially evacuated. Some of these flux elements contain ultra-intense magnetic fields that are significantly greater than B_p. Such fields are contained by a combination of the thermal pressure of the gas and the dynamic pressure of the convective motion, and they are constantly evolving. These ultra-intense fields develop owing to nonlinear interactions between magnetic fields and convection; they cannot be explained in terms of “convective collapse” within a thin flux tube that remains in overall pressure equilibrium with its surroundings
On phases in weakly interacting finite Bose systems
We study precursors of thermal phase transitions in finite systems of
interacting Bose gases. For weakly repulsive interactions there is a phase
transition to the one-vortex state. The distribution of zeros of the partition
function indicates that this transition is first order, and the precursors of
the phase transition are already displayed in systems of a few dozen bosons.
Systems of this size do not exhibit new phases as more vortices are added to
the system.Comment: 7 pages, 2 figure
Condensate fraction and critical temperature of a trapped interacting Bose gas
By using a mean field approach, based on the Popov approximation, we
calculate the temperature dependence of the condensate fraction of an
interacting Bose gas confined in an anisotropic harmonic trap. For systems
interacting with repulsive forces we find a significant decrease of the
condensate fraction and of the critical temperature with respect to the
predictions of the non-interacting model. These effects go in the opposite
direction compared to the case of a homogeneous gas. An analytic result for the
shift of the critical temperature holding to first order in the scattering
length is also derived.Comment: 8 pages, REVTEX, 2 figures, also available at
http://anubis.science.unitn.it/~oss/bec/BEC.htm
Deceptive signals of phase transitions in small magnetic clusters
We present an analysis of the thermodynamic properties of small transition
metal clusters and show how the commonly used indicators of phase transitions
like peaks in the specific heat or magnetic susceptibility can lead to
deceptive interpretations of the underlying physics. The analysis of the
distribution of zeros of the canonical partition function in the whole complex
temperature plane reveals the nature of the transition. We show that signals in
the magnetic susceptibility at positive temperatures have their origin at zeros
lying at negative temperatures.Comment: 4 pages, 5 figures, revtex4, for further information see
http://www.smallsystems.d
Transitions and Probes in Turbulent Helium
Previous analysis of a Paris turbulence experiment \cite{zoc94,tab95} shows a
transition at the Taylor Reynolds number \rel \approx 700. Here correlation
function data is analyzed which gives further evidence for this transition. It
is seen in both the power spectrum and in structure function measurements. Two
possible explanations may be offered for this observed transition: that it is
intrinsic to the turbulence flow in this closed box experiment or that it is an
effect of a change in the flow around the anemometer. We particularly examine a
pair of ``probe effects''. The first is a thermal boundary layer which does
exist about the probe and does limit the probe response, particularly at high
frequencies. Arguments based on simulations of the response and upon
observations of dissipation suggests that this effect is only crucial beyond
\rel\approx 2000. The second effect is produced by vortex shedding behind the
probe. This has been seen to produce a large modification in some of the power
spectra for large \rel. It might also complicate the interpretation of the
experimental results. However, there seems to be a remaining range of data for
\rel < 1300 uncomplicated by these effects, and which are thus suggestive of
an intrinsic transition.Comment: uuencoded .ps files. submitted to PRE. 12 figures are sent upon
request to jane wang ([email protected]
Numerical comparison of two approaches for the study of phase transitions in small systems
We compare two recently proposed methods for the characterization of phase
transitions in small systems. The validity and usefulness of these approaches
are studied for the case of the q=4 and q=5 Potts model, i.e. systems where a
thermodynamic limit and exact results exist. Guided by this analysis we discuss
then the helix-coil transition in polyalanine, an example of structural
transitions in biological molecules.Comment: 16 pages and 7 figure
Variable Curvature Slab Molecular Dynamics as a Method to Determine Surface Stress
A thin plate or slab, prepared so that opposite faces have different surface
stresses, will bend as a result of the stress difference. We have developed a
classical molecular dynamics (MD) formulation where (similar in spirit to
constant-pressure MD) the curvature of the slab enters as an additional
dynamical degree of freedom. The equations of motion of the atoms have been
modified according to a variable metric, and an additional equation of motion
for the curvature is introduced. We demonstrate the method to Au surfaces, both
clean and covered with Pb adsorbates, using many-body glue potentials.
Applications to stepped surfaces, deconstruction and other surface phenomena
are under study.Comment: 16 pages, 8 figures, REVTeX, submitted to Physical Review
Gaussian Entanglement of Formation
We introduce a Gaussian version of the entanglement of formation adapted to
bipartite Gaussian states by considering decompositions into pure Gaussian
states only. We show that this quantity is an entanglement monotone under
Gaussian operations and provide a simplified computation for states of
arbitrary many modes. For the case of one mode per site the remaining
variational problem can be solved analytically. If the considered state is in
addition symmetric with respect to interchanging the two modes, we prove
additivity of the considered entanglement measure. Moreover, in this case and
considering only a single copy, our entanglement measure coincides with the
true entanglement of formation.Comment: 8 pages (references updated, typos corrected
Quasienergy spectrum and tunneling current in ac-driven triple quantum dot shuttles
The dynamics of electrons in ac driven double quantum dots have been
extensively analyzed by means of Floquet theory. In these systems, coherent
destruction of tunneling has been shown to occur for certain ac field
parameters. In the present work we analyze, by means of Floquet theory, the
electron dynamics of a triple quantum dot in series attached to electric
contacts, where the central dot position oscillates. In particular, we analyze
the quasienergy spectrum of this ac driven nanoelectromechanical system, as a
function of the intensity and frequency of the ac field and of external dc
voltages. For strong driving fields, we derive, by means of perturbation
theory, analytical expressions for the quasienergies of the driven oscillator
system. From this analysis we discuss the conditions for coherent destruction
of tunneling (CDT) to occur as a function of detuning and field parameters. For
zero detuning, and from the invariance of the Floquet Hamiltonian under a
generalized parity transformation, we find analytical expressions describing
the symmetry properties of the Fourier components of the Floquet states under
such transformation. By using these expressions, we show that in the vicinity
of the CDT condition, the quasienergy spectrum exhibits exact crossings which
can be characterized by the parity properties of the corresponding
eigenvectors
Fluxtube model atmospheres and Stokes V zero-crossing wavelengths
First results of the inversion of Stokes I and V profiles from plage regions
near disk center are presented. Both low and high spatial resolution spectra of
FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP)
have been considered for analysis. The thin flux tube approximation,
implemented in an LTE inversion code based on response functions, is used to
describe unresolved magnetic elements. The code allows the simultaneous and
consistent inference of all atmospheric quantities determining the radiative
transfer with the sole assumption of hydrostatic equilibrium. By considering
velocity gradients within the tubes we are able to match the full ASP Stokes
profiles. The magnetic atmospheres derived from the inversion are characterized
by the absence of significant motions in high layers and strong velocity
gradients in deeper layers. These are essential to reproduce the asymmetries of
the observed profiles. Our scenario predicts a shift of the Stokes V
zero-crossing wavelengths which is indeed present in observations made with the
Fourier Transform Spectrometer.Comment: To appear in ApJ Letters (1997) (in press
- …