8,337 research outputs found

    Quark-Lepton Symmetry In Five Dimensions

    Get PDF
    We construct a complete five dimensional Quark-Lepton symmetric model, with all fields propagating in the bulk. The extra dimension forms an S1/Z2×Z2S^1/Z_2\times Z_2' orbifold with the zero mode fermions corresponding to standard model quarks localised at one fixed point. Zero modes corresponding to left(right)-chiral leptons are localised at (near) the other fixed point. This localisation pattern is motivated by the symmetries of the model. Shifting the right-handed neutrinos and charged leptons slightly from the fixed point provides a new mechanism for understanding the absence of relations of the type me=mum_e=m_u or me=mdm_e=m_d in Quark-Lepton symmetric models. Flavour changing neutral currents resulting from Kaluza Klein gluon exchange, which typically arise in the quark sector of split fermion models, are suppressed due to the localisation of quarks at one point. The separation of quarks and leptons in the compact extra dimension also acts to suppress the proton decay rate. This permits the extra dimension to be much larger than that obtained in a previous construct, with the bound 1/R301/R\gtrsim30 TeV obtained.Comment: 12 pages, references added to match published versio

    Density and Pair Correlation Function of Confined Identical Particles: the Bose-Einstein Case

    Full text link
    Two basic correlation functions are calculated for a model of NN harmonically interacting identical particles in a parabolic potential well. The density and the pair correlation function of the model are investigated for the boson case. The dependence of these static response properties on the complete range of the temperature and of the number of particles is obtained. The calculation technique is based on the path integral approach of symmetrized density matrices for identical particles in a parabolic confining well.Comment: 8 pages (REVTEX) + 6 figures (postscript

    Correlations in a Confined gas of Harmonically Interacting Spin-Polarized Fermions

    Full text link
    For a fermion gas with equally spaced energy levels, the density and the pair correlation function are obtained. The derivation is based on the path integral approach for identical particles and the inversion of the generating functions for both static responses. The density and the pair correlation function are evaluated explicitly in the ground state of a confined fermion system with a number of particles ranging from 1 to 220 and filling the Fermi level completely.Comment: 11 REVTEX pages, 3 postscript figures. Accepted for publication in Phys. Rev. E, Vol. 58 (August 1, 1998

    New-Physics Effects on Triple-Product Correlations in Lambda_b Decays

    Full text link
    We adopt an effective-lagrangian approach to compute the new-physics contributions to T-violating triple-product correlations in charmless Lambda_b decays. We use factorization and work to leading order in the heavy-quark expansion. We find that the standard-model (SM) predictions for such correlations can be significantly modified. For example, triple products which are expected to vanish in the SM can be enormous (~50%) in the presence of new physics. By measuring triple products in a variety of Lambda_b decays, one can diagnose which new-physics operators are or are not present. Our general results can be applied to any specific model of new physics by simply calculating which operators appear in that model.Comment: 20 pages, LaTeX, no figures. Added a paragraph (+ references) discussing nonfactorizable effects. Conclusions unchange

    Leptonic Flavor and CP Violation

    Get PDF
    We discuss how neutrino oscillation experiments can probe new sources of leptonic flavor and CP violation.Comment: 8 pages, latex, no figures. Invited talk given at KAON 2001, Pisa, Italy, June 12 - 17, 200

    New Physics Effects From B Meson Decays

    Full text link
    In this talk, we point out some of the present and future possible signatures of physics beyond the Standard Model from B-meson decays, taking R-parity conserving and violating supersymmetry as illustrative examples.Comment: Talk given at the Sixth Workshop on High Energy Particle Phenomenology (WHEPP-6), Chennai (Madras), India. Includes 2 epsf figure

    How to project a bipartite network?

    Get PDF
    The one-mode projecting is extensively used to compress the bipartite networks. Since the one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original information. In this article, inspired by the network-based resource-allocation dynamics, we raise a weighting method, which can be directly applied in extracting the hidden information of networks, with remarkably better performance than the widely used global ranking method as well as collaborative filtering. This work not only provides a creditable method in compressing bipartite networks, but also highlights a possible way for the better solution of a long-standing challenge in modern information science: How to do personal recommendation?Comment: 7 pages, 4 figure

    Neutrino Parameters, Abelian Flavor Symmetries, and Charged Lepton Flavor Violation

    Get PDF
    Neutrino masses and mixings have important implications for models of fermion masses, and, most directly, for the charged lepton sector. We consider supersymmetric Abelian flavor models, where neutrino mass parameters are related to those of charged leptons and sleptons. We show that processes such as \tau to \mu\gamma, \mu to e\gamma and \mu-e conversion provide interesting probes. In particular, some existing models are excluded by current bounds, while many others predict rates within reach of proposed near future experiments. We also construct models in which the predicted rates for charged lepton flavor violation are below even the proposed experimental sensitivities, but argue that such models necessarily involve loss of predictive power.Comment: 27 pages, refs added, published versio

    The time-varying performance of UK analyst recommendation revisions : do market conditions matter?

    Get PDF
    This study examines the time-varying performance of investment strategies following analyst recommendation revisions in the UK stock market, with specific emphasis on the impact of changing market conditions. We find a negative relationship between the recommendation performance and market conditions as measured in terms of past market return and market volatility. In particular, the upgrade (downgrade) portfolio generates significantly positive (negative) net abnormal returns in bad market conditions (e.g., the dot-com bubble burst in 2000 and the credit crisis in 2007), but not in other periods of time. Moreover, our non-temporal threshold regression analysis shows that the reported negative relationship disappears when market conditions become better, i.e., when the past market return (market volatility) is higher (lower) than a certain level, indicating the importance of taking non-linearity into account in the long sample period as examined in this study. Our time-series bootstrap simulations further confirm that the superior recommendation performance in bad market conditions is not due to random chance; analysts have certain skills in making valuable up/downward revisions in bad markets
    corecore