455 research outputs found

    Protective effect of prostacyclin on postischemic acute renal failure in the rat

    Get PDF
    Protective effect of prostacyclin on postischemic acute renal failure in the rat. Infusion of prostacyclin (PGI2) reportedly attenuates renal ischemic injury in the dog and the rat. In the dog, PGI2 is a potent renal vasodilator; in the rat a direct action on the renal vasculature is not always apparent. To determine whether or not the protective effect of PGI2 on postichemic ARF was hemodynamically mediated, studies were performed in uninephrectomized Sprague–Dawley rats before and after a 40 minute period of complete renal artery occlusion. In response to the preischemic infusion of PGI2 for 30 minutes at 160 ng/kg body wt/min i.v. (N = 7), MAP and RBF fell to 86 ± 7% (P < 0.0001) and 84 ± 9% (P < 0.05) of baseline values, respectively. RVR initially declined to 81 ± 9% of baseline values (P < 0.025) but returned to 102 ± 13% of baseline values prior to the period of ischemia. Following the period of ischemia, reflow of blood in the rats receiving PGI2 was delayed when compared to rats not receiving PGI2 (N = 1). RBF returned to only 76 ± 19% of the initial values in PGI2-treated rats (P < 0.01) but to 90 ± 12% of the initial values in rats receiving buffer alone (NS). Observations made during the ensuing 48 hours in animals treated with either 80 (N = 8) or 160 ng/kg/body wt/min (N = 7) for 30 minutes before and four hours after the period of ischemia indicated that renal function improved to a greater extent in the PGI2-treated animals than in buffer–treated animals (N = 15) as judged by significantly–greater mean values of V, UOsm, UCr and CCr. On the second day after ischemia, CInwas significantly greater in PGI2-treated animals than in the postischemic animals receiving buffer alone (77 ± 45 vs. 33 ± 20 µl/min/100 g body wt; P < 0.05) despite the fact that no differences were found in the mean values of RBF (3.59 ± 1.08 vs. 3.43 ± 0.32 ml/min/100 body wt. Blinded analysis of the histological sections revealed significantly less evidence of tublar epithelial cell necrosis in the PGI2-treated animals (P < 0.005). The data indicate that the protective effect of PGI2 on the renal response to ischemic injury in the Sprague–Dawley rat is not related to changes in RBF or RVR. Instead, the beneficial effect of PGI2may be a result of cytoprotective properties as has been demonstrated in other tissues

    Positional specificity of different transcription factor classes within enhancers

    Get PDF
    Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers. Keywords: transcription factor binding; gene regulation; genomics; chromatin structureNational Human Genome Research Institute (U.S.) (Grant 2U54HG003067-10)National Institute of General Medical Sciences (U.S.) (Grant T32GM007753

    Patient-Specific Lymphocyte Loss Kinetics as Biomarker of Spleen Dose in Patients Undergoing Radiation Therapy for Upper Abdominal Malignancies

    Get PDF
    Purpose: Radiation therapy (RT)-induced lymphopenia (RIL) is linked with inferior survival in esophageal and pancreatic cancers. Previous work has demonstrated a correlation between spleen dose and RIL risk. The present study correlates spleen dose-volume parameters with fractional lymphocyte loss rate (FLL) and total percent change in absolute lymphocyte count (%ΔALC) and suggests spleen dose constraints to reduce RIL risk. Methods and materials: This registry-based study included 140 patients who underwent RT for pancreatic (n = 67), gastroesophageal (n = 61), or biliary tract (n = 12) adenocarcinoma. Patient-specific parameters of lymphocyte loss kinetics, including FLL and %ΔALC, were calculated based on serial ALCs obtained during RT. Spearman's rho was used to correlate spleen dose-volume parameters with %ΔALC, end-treatment ALC, and FLL. Multivariable logistic regression was used to identify predictors of ≥grade 3 and grade 4 RIL. Results: Spleen dose-volume parameters, including mean spleen dose (MSD), all correlated with %ΔALC, end-treatment ALC, and FLL. Controlling for baseline ALC and planning target volume (PTV), an increase in any spleen dose-volume parameter increased the odds of developing ≥grade 3 lymphopenia. Each 1-Gy increase in MSD increased the odds of ≥grade 3 RIL by 18.6%, and each 100-cm3 increase in PTV increased the odds of ≥grade 3 lymphopenia by 20%. Patients with baseline ALC < 1500 cells/μL had a high risk of ≥grade 3 RIL regardless of MSD or PTV. FLL was an equally good predictor of ≥grade 3 lymphopenia as any spleen dose-volume parameter. Conclusions: In patients undergoing RT for upper abdominal malignancies, higher spleen dose is associated with higher per-fraction lymphocyte loss rates, higher total %ΔALC, and increased odds of severe lymphopenia. Spleen dose constraints should be individualized based on baseline ALC and PTV size to minimize RIL risk, although our findings require validation in larger, ideally prospective data sets

    Effects of systematic asymmetric discounting on physician-patient interactions: a theoretical framework to explain poor compliance with lifestyle counseling

    Get PDF
    BACKGROUND: This study advances the use of a utility model to model physician-patient interactions from the perspectives of physicians and patients. PRESENTATION OF THE HYPOTHESIS: In cases involving acute care, patient counseling involves a relatively straightforward transfer of information from the physician to a patient. The patient has less information than the physician on the impact the condition and its treatment have on utility. In decisions involving lifestyle changes, the patient may have more information than the physician on his/her utility of consumption; moreover, differences in discounting future health may contribute significantly to differences between patients' preferences and physicians' recommendations. TESTING THE HYPOTHESIS: The expectation of differences in internal discount rate between patients and their physicians is discussed. IMPLICATIONS OF THE HYPOTHESIS: This utility model provides a conceptual basis for the finding that educational approaches alone may not effect changes in patient behavior and suggests other economic variables that could be targeted in the attempt to produce healthier behavior

    IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome

    Get PDF
    Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    The clonal evolution of metastatic colorectal cancer

    Get PDF
    Tumor heterogeneity and evolution drive treatment resistance in metastatic colorectal cancer (mCRC). Patient-derived xenografts (PDXs) can model mCRC biology; however, their ability to accurately mimic human tumor heterogeneity is unclear. Current genomic studies in mCRC have limited scope and lack matched PDXs. Therefore, the landscape of tumor heterogeneity and its impact on the evolution of metastasis and PDXs remain undefined. We performed whole-genome, deep exome, and targeted validation sequencing of multiple primary regions, matched distant metastases, and PDXs from 11 patients with mCRC. We observed intricate clonal heterogeneity and evolution affecting metastasis dissemination and PDX clonal selection. Metastasis formation followed both monoclonal and polyclonal seeding models. In four cases, metastasis-seeding clones were not identified in any primary region, consistent with a metastasis-seeding-metastasis model. PDXs underrepresented the subclonal heterogeneity of parental tumors. These suggest that single sample tumor sequencing and current PDX models may be insufficient to guide precision medicine
    • …
    corecore