1,949 research outputs found

    The electronic structure of liquid water within density functional theory

    Full text link
    In the last decade, computational studies of liquid water have mostly concentrated on ground state properties. However recent spectroscopic measurements have been used to infer the structure of water, and the interpretation of optical and x-ray spectra requires accurate theoretical models of excited electronic states, not only of the ground state. To this end, we investigate the electronic properties of water at ambient conditions using ab initio density functional theory within the generalized gradient approximation (DFT/GGA), focussing on the unoccupied subspace of Kohn-Sham eigenstates. We generate long (250 ps) classical trajectories for large supercells, up to 256 molecules, from which uncorrelated configurations of water molecules are extracted for use in DFT/GGA calculations of the electronic structure. We find that the density of occupied states of this molecular liquid is well described with 32 molecule supercells using a single k-point (k = 0) to approximate integration over the first Brillouin zone. However, the description of the density of unoccupied states (u-EDOS) is sensitive to finite size effects. Small, 32 molecule supercell calculations, using Gamma-the point approximation, yield a spuriously isolated state above the Fermi level. Nevertheless, the more accurate u-EDOS of large, 256 molecule supercells may be reproduced using smaller supercells and increased k-point sampling. This indicates that the electronic structure of molecular liquids like water is relatively insensitive to the long-range disorder in the molecular structure. These results have important implications for efficiently increasing the accuracy of spectral calculations for water and other molecular liquids.Comment: 12 pages, 11 figures (low quality) Submitted to JChemPhy

    Stress effects on the Raman spectrum of an amorphous material: theory and experiment on a-Si:H

    Get PDF
    Strain in a material induces shifts in vibrational frequencies, which is a probe of the nature of the vibrations and interatomic potentials, and can be used to map local stress/strain distributions via Raman microscopy. This method is standard for crystalline silicon devices, but due to lack of calibration relations, it has not been applied to amorphous materials such as hydrogenated amorphous silicon (a-Si:H), a widely studied material for thin-film photovoltaic and electronic devices. We calculated the Raman spectrum of a-Si:H \ab initio under different strains ϵ\epsilon and found peak shifts Δω=(460±10 cm1)Tr ϵ\Delta \omega = \left( -460 \pm 10\ \mathrm{cm}^{-1} \right) {\rm Tr}\ \epsilon. This proportionality to the trace of the strain is the general form for isotropic amorphous vibrational modes, as we show by symmetry analysis and explicit computation. We also performed Raman measurements under strain and found a consistent coefficient of 510±120 cm1-510 \pm 120\ \mathrm{cm}^{-1}. These results demonstrate that a reliable calibration for the Raman/strain relation can be achieved even for the broad peaks of an amorphous material, with similar accuracy and precision as for crystalline materials.Comment: 12 pages, 3 figures + supplementary 8 pages, 4 figure

    Thermodynamic limits to energy conversion in solar thermal fuels

    Full text link
    Solar thermal fuels (STFs) are an unconventional paradigm for solar energy conversion and storage which is attracting renewed attention. In this concept, a material absorbs sunlight and stores the energy chemically via an induced structural change, which can later be reversed to release the energy as heat. An example is the azobenzene molecule which has a cis-trans photoisomerization with these properties, and can be tuned by chemical substitution and attachment to templates such as carbon nanotubes, small molecules, or polymers. By analogy to the Shockley-Queisser limit for photovoltaics, we analyze the maximum attainable efficiency for STFs from fundamental thermodynamic considerations. Microscopic reversibility provides a bound on the quantum yield of photoisomerization due to fluorescence, regardless of details of photochemistry. We emphasize the importance of analyzing the free energy, not just enthalpy, of the metastable molecules, and find an efficiency limit for conversion to stored chemical energy equal to the Shockley-Queisser limit. STF candidates from a recent high-throughput search are analyzed in light of the efficiency limit.Comment: 16 pages, 4 figure

    Multilayer Nanoporous Graphene Membranes for Water Desalination

    Get PDF
    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.National Science Foundation (U.S.) (grant number ACI-1053575)Netherlands Organization for Scientific Research (NWO

    B-Decay CP Asymmetries, Discrete Ambiguities and New Physics

    Get PDF
    The first measurements of CP violation in the BB system will likely probe sin2α\sin 2\alpha, sin2β\sin 2\beta and cos2γ\cos 2\gamma. Assuming that the CP angles α\alpha, β\beta and γ\gamma are the interior angles of the unitarity triangle, these measurements determine the angle set (α,β,γ)(\alpha,\beta,\gamma) except for a twofold discrete ambiguity. If one allows for the possibility of new physics, the presence of this discrete ambiguity can make its discovery difficult: if only one of the two candidate solutions is consistent with constraints from other measurements in the BB and KK systems, one is not sure whether new physics is present or not. We review the methods used to resolve the discrete ambiguity and show that, even in the presence of new physics, they can usually be used to uncover this new physics. There are some exceptions, which we describe in detail. We systematically scan the parameter space and present examples of values of (α,β,γ)(\alpha,\beta,\gamma) and the new-physics parameters which correspond to all possibilities. Finally, we show that if one relaxes the assumption that the bag parameters \BBd and \BK are positive, one can no longer definitively establish the presence of new physics.Comment: 29 pages, LaTeX, 1 figures, presentation substantially reworked, physics conclusions unchanged. This version will be published in Phys. Rev.

    Novel nanomaterials for water desalination technology

    Get PDF
    Water desalination has a central role to play in the global challenge for sustainable water supply in the 21st century. But while the membranes employed in reverse osmosis (RO) have benefited from substantial improvements over the past 25 years, several recent advances in materials suggest that new membranes with dramatically higher water permeability will become available in the future. After providing an overview of the importance of membranes for sustainable water production, we describe some of the most exciting novel approaches for water desalination based on nanomaterials. In particular, graphene, a single-layer sheet of carbon with remarkable mechanical and electronic properties, can be patterned with nanometer-sized pores, to act as an ultra-thin filtration membrane. Drawing from our group's research at MIT, we will share some of our key findings about the potential impact of nanomaterials as membranes for water desalination in the 21st century.MIT Energy InitiativeNational Science Foundation (U.S.)MIT Energy Initiative. Seed Fund ProgramJohn S. Hennessy Fellowshi

    Quantifying the potential of ultra-permeable membranes for water desalination

    Get PDF
    In the face of growing water scarcity, it is critical to understand the potential of saltwater desalination as a long-term water supply option. Recent studies have highlighted the promise of new membrane materials that could desalinate water while exhibiting far greater permeability than conventional reverse osmosis (RO) membranes, but the question remains whether higher permeability can translate into significant reductions in the cost of desalinating water. Here, we address a critical question by evaluating the potential of such ultra-permeable membranes (UPMs) to improve the performance and cost of RO. By modeling the mass transport inside RO pressure vessels, we quantify how much a tripling in the water permeability of a membrane would reduce the energy consumption or the number of required pressure vessels for a given RO plant. We find that a tripling in permeability would allow for 44% fewer pressure vessels or 15% less energy for a seawater RO plant with a given capacity and recovery ratio. Moreover, a tripling in permeability would result in 63% fewer pressure vessels or 46% less energy for brackish water RO. However, we also find that the energy savings of UPMs exhibit a law of diminishing returns due to thermodynamics and concentration polarization at the membrane surface.National Science Foundation (U.S.). Graduate Research FellowshipMIT Energy Initiative (Seed Grant Program)Fulbright Program (International Science and Technology Award Program)International Desalination Association (Channabasappa Memorial Scholarship)Martin Family Fellowship for Sustainabilit

    Exploring CP Violation with B_d -> D K_s Decays

    Full text link
    We (re)examine CP violation in the decays B_d -> D K_s, where D represents D^0, D(bar), or one of their excited states. The quantity sin2(2β+γ)\sin^2(2\beta + \gamma) can be extracted from the time-dependent rates for Bd(t)>Dˉ0KsB_d(t) -> {\bar D}^{**0} K_s and Bd(t)>D0KsB_d(t) -> D^{**0} K_s, where the D0D^{**0} decays to D()+πD^{(*)+}\pi^-. If one considers a non-CP-eigenstate hadronic final state to which both D(bar) and D^0 can decay (e.g. K+πK^+\pi^-), then one can obtain two of the angles of the unitarity triangle from measurements of the time-dependent rates for Bd(t)>(K+π)DKsB_d(t) -> (K^+\pi^-)_{D K_s} and Bd(t)>(Kπ+)DKsB_d(t) -> (K^-\pi^+)_{D K_s}. There are no penguin contributions to these decays, so all measurements are theoretically clean.Comment: 15 pages, LaTeX, no figure
    corecore