5 research outputs found

    Cancer treatment and relapse : single-cell chromatin profiling of rare persister cells using droplet-based microfluidics

    No full text
    La nature dynamique de la chromatine est un acteur majeur de la régulation de la transcription et est suspectée de contribuer à l'évolution tumorale. L'étude des modifications de la chromatine à l'échelle de la cellule unique est indispensable pour comprendre l'impact de la plasticité épigénétique au cours de la tumorigénèse.Dans ce manuscrit, je décris le développement d'un système basé sur la microfluidique en gouttelettes permettant d'obtenir la cartographie des modifications de la chromatine à l'échelle de la cellule unique.Le système a été évalué pour cartographier des modifications d'histones associées à un état transcriptionnel actif (H3K4me3) ou réprimé (H3K27me3) de cellules B et T humaines. Les données ont permis de classer >99% des cellules sur la base de leur profil épigénétique, définissant ainsi avec une grande précision des états de la chromatine propres à chaque type cellulaire.A partir de xénogreffes dérivées de patient atteint du cancer du sein et ayant acquis une résistance thérapeutique, le système a permis la détection de sous-populations rares de cellules parmi les tumeurs non-traitées, présentant un profil chromatinien similaire aux cellules cancéreuses résistantes.Cette étude démontre l'importance de l'hétérogénéité cellulaire sur la progression tumorale et met en évidence une signature épigénétique associée à la résistance et susceptible d'être la cible d'un traitement thérapeutique.The dynamic nature of chromatin and transcriptional features play a critical role in normal differentiation and are expected to contribute to tumor evolution. Studying the heterogeneity of chromatin alterations with single-cell resolution is mandatory to understand the contribution of epigenetic plasticity in cancer.In this thesis, I describe a droplet microfluidics approach to profile chromatin landscapes of thousands of cells at single-cell resolution, with an unprecedented coverage of 10,000 loci per cell.The system was evaluated to profile histone modifications associated with active (H3K4me3) and inactive transcription (H3K27me3) of human B cells and T cells, and revealed that >99% of the cells were correctly assigned to one cell type, defining distinct chromatin states of immune cells with high accuracy.In patient-derived xenograft (PDX) models of breast cancer with acquired drug resistance, the system enabled the detection of a rare subpopulation of cells in the untreated, drug-sensitive tumors with chromatin features characteristic of resistant cancer cells. These cells had lost chromatin marks (H3K27me3) associated with stable transcriptional repression for a number of genes known to promote resistance, potentially priming them for transcriptional activation.These results highlight the potential selection of cells with specific chromatin marks in response and in resistance to cancer therapy

    Cartographie épigénétique de cellules cancéreuses résistantes rares par microfluidique en gouttelettes

    No full text
    The dynamic nature of chromatin and transcriptional features play a critical role in normal differentiation and are expected to contribute to tumor evolution. Studying the heterogeneity of chromatin alterations with single-cell resolution is mandatory to understand the contribution of epigenetic plasticity in cancer.In this thesis, I describe a droplet microfluidics approach to profile chromatin landscapes of thousands of cells at single-cell resolution, with an unprecedented coverage of 10,000 loci per cell.The system was evaluated to profile histone modifications associated with active (H3K4me3) and inactive transcription (H3K27me3) of human B cells and T cells, and revealed that >99% of the cells were correctly assigned to one cell type, defining distinct chromatin states of immune cells with high accuracy.In patient-derived xenograft (PDX) models of breast cancer with acquired drug resistance, the system enabled the detection of a rare subpopulation of cells in the untreated, drug-sensitive tumors with chromatin features characteristic of resistant cancer cells. These cells had lost chromatin marks (H3K27me3) associated with stable transcriptional repression for a number of genes known to promote resistance, potentially priming them for transcriptional activation.These results highlight the potential selection of cells with specific chromatin marks in response and in resistance to cancer therapy.La nature dynamique de la chromatine est un acteur majeur de la régulation de la transcription et est suspectée de contribuer à l'évolution tumorale. L'étude des modifications de la chromatine à l'échelle de la cellule unique est indispensable pour comprendre l'impact de la plasticité épigénétique au cours de la tumorigénèse.Dans ce manuscrit, je décris le développement d'un système basé sur la microfluidique en gouttelettes permettant d'obtenir la cartographie des modifications de la chromatine à l'échelle de la cellule unique.Le système a été évalué pour cartographier des modifications d'histones associées à un état transcriptionnel actif (H3K4me3) ou réprimé (H3K27me3) de cellules B et T humaines. Les données ont permis de classer >99% des cellules sur la base de leur profil épigénétique, définissant ainsi avec une grande précision des états de la chromatine propres à chaque type cellulaire.A partir de xénogreffes dérivées de patient atteint du cancer du sein et ayant acquis une résistance thérapeutique, le système a permis la détection de sous-populations rares de cellules parmi les tumeurs non-traitées, présentant un profil chromatinien similaire aux cellules cancéreuses résistantes.Cette étude démontre l'importance de l'hétérogénéité cellulaire sur la progression tumorale et met en évidence une signature épigénétique associée à la résistance et susceptible d'être la cible d'un traitement thérapeutique

    H3K27me3 conditions chemotolerance in triple-negative breast cancer

    No full text
    International audienceThe persistence of cancer cells resistant to therapy remains a major clinical challenge. In triple-negative breast cancer, resistance to chemotherapy results in the highest recurrence risk among breast cancer subtypes. The drug-tolerant state seems largely defined by nongenetic features, but the underlying mechanisms are poorly understood. Here, by monitoring epigenomes, transcriptomes and lineages with single-cell resolution, we show that the repressive histone mark H3K27me3 (trimethylation of histone H3 at lysine 27) regulates cell fate at the onset of chemotherapy. We report that a persister expression program is primed with both H3K4me3 (trimethylation of histone H3 at lysine 4) and H3K27me3 in unchallenged cells, with H3K27me3 being the lock to its transcriptional activation. We further demonstrate that depleting H3K27me3 enhances the potential of cancer cells to tolerate chemotherapy. Conversely, preventing H3K27me3 demethylation simultaneously to chemotherapy inhibits the transition to a drug-tolerant state, and delays tumor recurrence in vivo. Our results highlight how chromatin landscapes shape the potential of cancer cells to respond to initial therapy

    High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics

    No full text
    International audienceMining the antibody repertoire of plasma cells and plasmablasts could enable the discovery of useful antibodies for therapeutic or research purposes1. We present a method for high-throughput, single-cell screening of IgG-secreting primary cells to characterize antibody binding to soluble and membrane-bound antigens. CelliGO is a droplet microfluidics system that combines high-throughput screening for IgG activity, using fluorescence-based in-droplet single-cell bioassays2, with sequencing of paired antibody V genes, using in-droplet single-cell barcoded reverse transcription. We analyzed IgG repertoire diversity, clonal expansion and somatic hypermutation in cells from mice immunized with a vaccine target, a multifunctional enzyme or a membrane-bound cancer target. Immunization with these antigens yielded 100–1,000 IgG sequences per mouse. We generated 77 recombinant antibodies from the identified sequences and found that 93% recognized the soluble antigen and 14% the membrane antigen. The platform also allowed recovery of ~450–900 IgG sequences from ~2,200 IgG-secreting activated human memory B cells, activated ex vivo, demonstrating its versatility
    corecore