19 research outputs found

    Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood

    Get PDF
    Attention-deficit hyperactivity disorder (ADHD) is a common behavioural disorder that affects not only children and adolescents but also adults; however, diagnosis of adult ADHD is difficult because patients seem to have reduced externalized behaviour. ADHD is a multifactorial disorder in which many genes, all with small effects, are thought to cause the disorder in the presence of unfavourable environmental conditions. Therefore, in this pilot study, we explored the expression profile of a list of previously established candidate genes in peripheral blood samples from adult ADHD subjects (n=108) and compared these results with those of healthy controls (n=35). We demonstrate that combining the gene expression levels of dopamine transporter (SLC6A3), dopamine D5 receptor, tryptophan hydroxylase-1, and SNAP25 as predictors in a regression model resulted in sensitivity and specificity of over 80% (ROC: max R 2=0.587, AUC=0.917, P<0.001, 95% CI: 0.900-0.985). In conclusion, the combination of these four genes could represent a potential method for estimating risk and could be of diagnostic value for ADHD. Nevertheless, further investigation in a larger independent population including different subtypes of ADHD (inattentive, hyperactive, or combined type) patients is required to obtain more specific sets of biomarkers for each subtype as well as to differentiate between child, adolescent, and adulthood form

    Internalizing and externalizing behavior in adult ADHD

    No full text
    Although there are many studies available investigating internalizing and externalizing behavior in childhood and adolescent manifestations of attention-deficit/hyperactivity disorder, there is limited information about their relevance in adults featuring persistence of the disease. We examined a large sample of 910 adults affected with attention-deficit/hyperactivity disorders (AADHD) for internalizing and externalizing behavior. Regarding correlates of internalizing behavior, AADHD probands showed significantly higher scores of the anxiety- and depression-related personality traits Neuroticism and Harm Avoidance, compared with reference values. The lifetime comorbidity of depressive disorders, anxiety disorders, and anxious or fearful Cluster C personality disorders (PDs) is elevated in AADHD patients compared with general population. Regarding correlates of externalizing behavior, patients affected with AADHD show significantly lower scores of Conscientiousness and significantly higher scores of Novelty Seeking than the published German reference values. Emotional, dramatic, or erratic Cluster B PDs were most frequent in AADHD. Internalizing and externalizing behavior notably affected psychosocial status to a similar extent. The frequency of both internalizing and externalizing behavior in AADHD might reflect an underlying emotional regulation disorder.</p

    KCNIP4 as a candidate gene for personality disorders and adult ADHD

    No full text
    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder in children with striking persistence into adulthood and a high co-morbidity with other psychiatric disorders, including personality disorders (PD). The 4p15.31 region was shown to be associated with ADHD in several genome wide association studies (GWAS). In the present study we also report association of the 4p15.31 locus with Cluster B and Cluster C PD as identified by a pooled genome-wide association study in 400 individuals suffering from PD. The gene coding for the Kv channel-interacting protein 4 (KCNIP4) is located in this region. KCNIP4 is an interaction partner of presenilin and plays a role in a negative feedback loop in the Wnt/?-catenin pathway. Thus, we reasoned it to be a promising candidate gene for ADHD as well as for PD. To clarify the role of KCNIP4 in those disorders, we conducted candidate gene based association studies in 594 patients suffering from adult ADHD and 630 PD patients as compared to 974 healthy control individuals. In the adult ADHD sample, six single markers and one haplotype block revealed to be associated with disease (p values from 0.0079 to 0.049). Seven markers within the KCNIP4 gene showed an association with PD (p values from 0.0043 to 0.0437). The results of these studies suggest a role of KCNIP4 in the etiology of ADHD, PD and other co-morbid disorders. Elsevier B.V. and ECNP. All rights reserved

    Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood

    Full text link
    Attention-deficit hyperactivity disorder (ADHD) is a common behavioural disorder that affects not only children and adolescents but also adults; however, diagnosis of adult ADHD is difficult because patients seem to have reduced externalized behaviour. ADHD is a multifactorial disorder in which many genes, all with small effects, are thought to cause the disorder in the presence of unfavourable environmental conditions. Therefore, in this pilot study, we explored the expression profile of a list of previously established candidate genes in peripheral blood samples from adult ADHD subjects (n = 108) and compared these results with those of healthy controls (n = 35). We demonstrate that combining the gene expression levels of dopamine transporter (SLC6A3), dopamine D5 receptor, tryptophan hydroxylase-1, and SNAP25 as predictors in a regression model resulted in sensitivity and specificity of over 80 % (ROC: max R(2) = 0.587, AUC = 0.917, P < 0.001, 95 % CI: 0.900-0.985). In conclusion, the combination of these four genes could represent a potential method for estimating risk and could be of diagnostic value for ADHD. Nevertheless, further investigation in a larger independent population including different subtypes of ADHD (inattentive, hyperactive, or combined type) patients is required to obtain more specific sets of biomarkers for each subtype as well as to differentiate between child, adolescent, and adulthood forms

    DIRAS2 is associated with adult ADHD, related traits, and co-morbid disorders

    Full text link
    Several linkage analyses implicated the chromosome 9q22 region in attention deficit/hyperactivity disorder (ADHD), a neurodevelopmental disease with remarkable persistence into adulthood. This locus contains the brain-expressed GTP-binding RAS-like 2 gene (DIRAS2) thought to regulate neurogenesis. As DIRAS2 is a positional and functional ADHD candidate gene, we conducted an association study in 600 patients suffering from adult ADHD (aADHD) and 420 controls. Replication samples consisted of 1035 aADHD patients and 1381 controls, as well as 166 families with a child affected from childhood ADHD. Given the high degree of co-morbidity with ADHD, we also investigated patients suffering from bipolar disorder (BD) (n=336) or personality disorders (PDs) (n=622). Twelve single-nucleotide polymorphisms (SNPs) covering the structural gene and the transcriptional control region of DIRAS2 were analyzed. Four SNPs and two haplotype blocks showed evidence of association with ADHD, with nominal p-values ranging from p=0.006 to p=0.05. In the adult replication samples, we obtained a consistent effect of rs1412005 and of a risk haplotype containing the promoter region (p=0.026). Meta-analysis resulted in a significant common OR of 1.12 (p=0.04) for rs1412005 and confirmed association with the promoter risk haplotype (OR=1.45, p=0.0003). Subsequent analysis in nuclear families with childhood ADHD again showed an association of the promoter haplotype block (p=0.02). rs1412005 also increased risk toward BD (p=0.026) and cluster B PD (p=0.031). Additional SNPs showed association with personality scores (p=0.008-0.048). Converging lines of evidence implicate genetic variance in the promoter region of DIRAS2 in the etiology of ADHD and co-morbid impulsive disorders
    corecore