31,757 research outputs found

    Poisoning of Hydrogen Dissociation at Pd (100) by Adsorbed Sulfur Studied by ab initio Quantum Dynamics and ab initio Molecular Dynamics

    Full text link
    We report calculations of the dissociative adsorption of H_2 at Pd (100) covered with 1/4 monolayer of sulfur using quantum dynamics as well as molecular dynamics and taking all six degrees of freedom of the two H atoms fully into account. The ab initio potential-energy surface (PES) is found to be very strongly corrugated. In particular we discuss the influence of tunneling, zero-point vibrations, localization of the nuclei's wave function when narrow valleys of the PES are passed, steering of the approaching H_2 molecules towards low energy barrier configurations, and the time scales of the center of mass motion and the other degrees of freedom. Several ``established'' concepts, which were derived from low-dimensional dynamical studies, are shown to be not valid.Comment: 4 pages, 3 figures, submitted to Surf. Sci. Lett. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Stability of networks of delay-coupled delay oscillators

    Full text link
    Dynamical networks with time delays can pose a considerable challenge for mathematical analysis. Here, we extend the approach of generalized modeling to investigate the stability of large networks of delay-coupled delay oscillators. When the local dynamical stability of the network is plotted as a function of the two delays then a pattern of tongues is revealed. Exploiting a link between structure and dynamics, we identify conditions under which perturbations of the topology have a strong impact on the stability. If these critical regions are avoided the local stability of large random networks can be well approximated analytically

    Gauge Fields and Space-Time

    Full text link
    In this article I attempt to collect some ideas,opinions and formulae which may be useful in solving the problem of gauge/ string / space-time correspondence This includes the validity of D-brane representation, counting of gauge-invariant words, relations between the null states and the Yang-Mills equations and the discussion of the strong coupling limit of the string sigma model. The article is based on the talk given at the "Odyssey 2001" conference.Comment: 20 page

    Measuring and engineering entropy and spin squeezing in weakly linked Bose-Einstein condensates

    Get PDF
    We propose a method to infer the single-particle entropy of bosonic atoms in an optical lattice and to study the local evolution of entropy, spin squeezing, and entropic inequalities for entanglement detection in such systems. This method is based on experimentally feasible measurements of non-nearest-neighbour coherences. We study a specific example of dynamically controlling atom tunneling between selected sites and show that this could potentially also improve the metrologically relevant spin squeezing

    Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography

    Full text link
    We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. We describe here our present state of art and understanding on the problem of breast imaging with PR detection of the acousto-optic signal

    Emergent bipartiteness in a society of knights and knaves

    Get PDF
    We propose a simple model of a social network based on so-called knights-and-knaves puzzles. The model describes the formation of networks between two classes of agents where links are formed by agents introducing their neighbours to others of their own class. We show that if the proportion of knights and knaves is within a certain range, the network self-organizes to a perfectly bipartite state. However, if the excess of one of the two classes is greater than a threshold value, bipartiteness is not observed. We offer a detailed theoretical analysis for the behaviour of the model, investigate its behaviou r in the thermodynamic limit, and argue that it provides a simple example of a topology-driven model whose behaviour is strongly reminiscent of a first-order phase transitions far from equilibrium.Comment: 12 pages, 5 figure

    Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates

    Full text link
    Squeezed states, a special kind of entangled states, are known as a useful resource for quantum metrology. In interferometric sensors they allow to overcome the "classical" projection noise limit stemming from the independent nature of the individual photons or atoms within the interferometer. Motivated by the potential impact on metrology as wells as by fundamental questions in the context of entanglement, a lot of theoretical and experimental effort has been made to study squeezed states. The first squeezed states useful for quantum enhanced metrology have been proposed and generated in quantum optics, where the squeezed variables are the coherences of the light field. In this tutorial we focus on spin squeezing in atomic systems. We give an introduction to its concepts and discuss its generation in Bose-Einstein condensates. We discuss in detail the experimental requirements necessary for the generation and direct detection of coherent spin squeezing. Two exemplary experiments demonstrating adiabatically prepared spin squeezing based on motional degrees of freedom and diabatically realized spin squeezing based on internal hyperfine degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure

    Classical bifurcation at the transition from Rabi to Josephson dynamics

    Full text link
    We report on the experimental realization of an internal bosonic Josephson junction in a Rubidium spinor Bose-Einstein condensate. The measurement of the full time dynamics in phase space allows the characterization of the theoretically predicted π\pi-phase modes and quantitatively confirms analytical predictions, revealing a classical bifurcation. Our results suggest that this system is a model system which can be tuned from classical to the quantum regime and thus is an important step towards the experimental investigation of entanglement generation close to critical points

    String Spectrum of 1+1-Dimensional Large N QCD with Adjoint Matter

    Get PDF
    We propose gauging matrix models of string theory to eliminate unwanted non-singlet states. To this end we perform a discretised light-cone quantisation of large N gauge theory in 1+1 dimensions, with scalar or fermionic matter fields transforming in the adjoint representation of SU(N). The entire spectrum consists of bosonic and fermionic closed-string excitations, which are free as N tends to infinity. We analyze the general features of such bound states as a function of the cut-off and the gauge coupling, obtaining good convergence for the case of adjoint fermions. We discuss possible extensions of the model and the search for new non-critical string theories.Comment: 20 pages (7 figures available from authors as postscipt files), PUPT-134
    • …
    corecore