3,516 research outputs found

    S matrix of collective field theory

    Full text link
    By applying the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism, we study the S matrix of collective field theory in which fermi energy is larger than the height of potential. We consider the spatially symmetric and antisymmetric boundary conditions. The difference is that S matrices are proportional to momenta of external particles in antisymmetric boundary condition, while they are proportional to energies in symmetric boundary condition. To the order of gst2g_{st}^2, we find simple formulas for the S matrix of general potential. As an application, we calculate the S matrix of a case which has been conjectured to describe a "naked singularity".Comment: 19 page, LaTe

    Masses of the pseudo-Nambu-Goldstone bosons in two flavor color superconducting phase

    Full text link
    The masses of the pseudo-Nambu-Goldstone bosons in the color superconducting phase of dense QCD with two light flavors are estimated by making use of the Cornwall-Jackiw-Tomboulis effective action. Parametrically, the masses of the doublet and antidoublet bosons are suppressed by a power of the coupling constant as compared to the value of the superconducting gap. This is qualitatively different from the mass expression for the singlet pseudo-Nambu-Goldstone boson, resulting from non-perturbative effects. It is argued that the (anti-) doublet pseudo-Nambu-Goldstone bosons form colorless [with respect to the unbroken SU(2)_{c}] charmonium-like bound states. The corresponding binding energy is also estimated.Comment: 18 pages and 1 figure. REVTeX. New references and Appendix C with a discussion of the gauge invariance in color superconductivity are added. To appear in Phys. Rev.

    Failure of adaptive self-organized criticality during epileptic seizure attacks

    Get PDF
    Critical dynamics are assumed to be an attractive mode for normal brain functioning as information processing and computational capabilities are found to be optimized there. Recent experimental observations of neuronal activity patterns following power-law distributions, a hallmark of systems at a critical state, have led to the hypothesis that human brain dynamics could be poised at a phase transition between ordered and disordered activity. A so far unresolved question concerns the medical significance of critical brain activity and how it relates to pathological conditions. Using data from invasive electroencephalogram recordings from humans we show that during epileptic seizure attacks neuronal activity patterns deviate from the normally observed power-law distribution characterizing critical dynamics. The comparison of these observations to results from a computational model exhibiting self-organized criticality (SOC) based on adaptive networks allows further insights into the underlying dynamics. Together these results suggest that brain dynamics deviates from criticality during seizures caused by the failure of adaptive SOC.Comment: 7 pages, 5 figure

    Quantum Gravity, the Origin of Time and Time's Arrow

    Full text link
    The local Lorentz and diffeomorphism symmetries of Einstein's gravitational theory are spontaneously broken by a Higgs mechanism by invoking a phase transition in the early Universe, at a critical temperature TcT_c below which the symmetry is restored. The spontaneous breakdown of the vacuum state generates an external time and the wave function of the Universe satisfies a time dependent Schrodinger equation, which reduces to the Wheeler-deWitt equation in the classical regime for T<TcT < T_c, allowing a semi-classical WKB approximation to the wave function. The conservation of energy is spontaneously violated for T>TcT > T_c and matter is created fractions of seconds after the big bang, generating the matter in the Universe. The time direction of the vacuum expectation value of the scalar Higgs field generates a time asymmetry, which defines the cosmological arrow of time and the direction of increasing entropy as the Lorentz symmetry is restored at low temperatures.Comment: 37 page

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Corrections to the Electroweak Effective Action at Finite Temperature

    Full text link
    We calculate contributions to the finite temperature effective action for the electroweak phase transition (EWPT) at \O(g^4), {\it i.e.} at second order in (g^2 T/\M) and all orders in (g^2 T^2/\M^2). This requires plasma-mass corrections in the calculation of the effective potential, inclusion of the ``lollipop'' diagram, and an estimate of derivative corrections. We find the EWPT remains too weakly first-order to drive baryogenesis. We calculate some one loop kinetic energy corrections using both functional and diagrammatic methods; these may be important for saddlepoint configurations such as the bounce or sphaleron.Comment: LaTeX, 6 figures available by email, CALT-68-1795, HUTP-92-A027, EFI-92-2

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Current quark mass effects on chiral phase transition of QCD in the improved ladder approximation

    Get PDF
    Current quark mass effects on the chiral phase transition of QCD is studied in the improved ladder approximation. An infrared behavior of the gluon propagator is modified in terms of an effective running coupling. The analysis is based on a composite operator formalism and a variational approach. We use the Schwinger-Dyson equation to give a ``normalization condition'' for the Cornwall-Jackiw-Tomboulis effective potential and to isolate the ultraviolet divergence which appears in an expression for the quark-antiquark condensate. We study the current quark mass effects on the order parameter at zero temperature and density. We then calculate the effective potential at finite temperature and density and investigate the current quark mass effects on the chiral phase transition. We find a smooth crossover for T>0T>0, μ=0\mu=0 and a first-order phase transition for μ>0\mu>0, T=0. Critical exponents are also studied and our model gives the classical mean-field values. We also study the temperature dependence of masses of scalar and pseudoscalar bosons. A critical end point in the TT-μ\mu plane is found at T100T \sim 100 MeV, μ300\mu \sim 300 MeV.Comment: 19 pages, 13 figure

    Inhomogeneous Superconductivity in Condensed Matter and QCD

    Full text link
    Inhomogeneous superconductivity arises when the species participating in the pairing phenomenon have different Fermi surfaces with a large enough separation. In these conditions it could be more favorable for each of the pairing fermions to stay close to its Fermi surface and, differently from the usual BCS state, for the Cooper pair to have a non zero total momentum. For this reason in this state the gap varies in space, the ground state is inhomogeneous and a crystalline structure might be formed. This situation was considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and the corresponding state is called LOFF. The spontaneous breaking of the space symmetries in the vacuum state is a characteristic feature of this phase and is associated to the presence of long wave-length excitations of zero mass. The situation described here is of interest both in solid state and in elementary particle physics, in particular in Quantum Chromo-Dynamics at high density and small temperature. In this review we present the theoretical approach to the LOFF state and its phenomenological applications using the language of the effective field theories.Comment: RevTex, 83 pages, 26 figures. Submitted to Review of Modern Physic
    corecore