1,111 research outputs found

    Bosons in anisotropic traps: ground state and vortices

    Full text link
    We solve the Gross-Pitaevskii equations for a dilute atomic gas in a magnetic trap, modeled by an anisotropic harmonic potential. We evaluate the wave function and the energy of the Bose Einstein condensate as a function of the particle number, both for positive and negative scattering length. The results for the transverse and vertical size of the cloud of atoms, as well as for the kinetic and potential energy per particle, are compared with the predictions of approximated models. We also compare the aspect ratio of the velocity distribution with first experimental estimates available for 87^{87}Rb. Vortex states are considered and the critical angular velocity for production of vortices is calculated. We show that the presence of vortices significantly increases the stability of the condensate in the case of attractive interactions.Comment: 22 pages, REVTEX, 8 figures available upon request or at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    Improved numerical approach for time-independent Gross-Pitaevskii nonlinear Schroedinger equation

    Full text link
    In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear Schroedinger equation. A particular scaling is used in the equation, which permits to evaluate the wave-function normalization after the numerical solution. We have a two point boundary value problem, where the second point is taken at infinity. The differential equation is solved using the shooting method and Runge-Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, are equal for large distances. In order to obtain fast convergence, the secant method is used.Comment: 2 figure

    Optimal Hypercontractivity for Fermi Fields and Related Non-Commutative Integration

    Full text link
    Optimal hypercontractivity bounds for the fermion oscillator semigroup are obtained. These are the fermion analogs of the optimal hypercontractivity bounds for the boson oscillator semigroup obtained by Nelson. In the process, several results of independent interest in the theory of non-commutative integration are established. {}.Comment: 18 p., princeton/ecel/7-12-9

    Interaction of pulses in nonlinear Schroedinger model

    Full text link
    The interaction of two rectangular pulses in nonlinear Schroedinger model is studied by solving the appropriate Zakharov-Shabat system. It is shown that two real pulses may result in appearance of moving solitons. Different limiting cases, such as a single pulse with a phase jump, a single chirped pulse, in-phase and out-of-phase pulses, and pulses with frequency separation, are analyzed. The thresholds of creation of new solitons and multi-soliton states are found.Comment: 9 pages, 7 figures. Accepted to Phys. Rev. E, 200

    Fermion Mixing Renormalization and Gauge Invariance

    Get PDF
    We study the renormalization of the fermion mixing matrix in the Standard Model and derive the constraints that must be satisfied to respect gauge invariance to all orders. We demonstrate that the prescription based on the {\it on-shell} renormalization conditions is not consistent with the Ward-Takahashi Identities and leads to gauge dependent physical amplitudes. A simple scheme is proposed that satisfies all theoretical requirements and is very convenient for practical calculations.Comment: 10 pages, LaTex; Revised version accepted for publication in Phys. Lett.

    The Dirac equation in Taub-NUT space

    Full text link
    Using chiral supersymmetry, we show that the massless Dirac equation in the Taub-NUT gravitational instanton field is exactly soluble and explain the arisal and the use of the dynamical (super) symmetry.Comment: An importatn misprint in a reference is corrected. Plain Tex. 8 page

    Instantons and radial excitations in attractive Bose-Einstein condensates

    Get PDF
    Imaginary- and real-time versions of an equation for the condensate density are presented which describe dynamics and decay of any spherical Bose-Einstein condensate (BEC) within the mean field appraoch. We obtain quantized energies of collective finite amplitude radial oscillations and exact numerical instanton solutions which describe quantum tunneling from both the metastable and radially excited states of the BEC of 7Li atoms. The mass parameter for the radial motion is found different from the gaussian value assumed hitherto, but the effect of this difference on decay exponents is small. The collective breathing states form slightly compressed harmonic spectrum, n=4 state lying lower than the second Bogolyubov (small amplitude) mode. The decay of these states, if excited, may simulate a shorter than true lifetime of the metastable state. By scaling arguments, results extend to other attractive BEC-s.Comment: 6 pages, 3 figure

    Steady-State Visual Evoked Potentials Can Be Explained by Temporal Superposition of Transient Event-Related Responses

    Get PDF
    <p><b>Background:</b> One common criterion for classifying electrophysiological brain responses is based on the distinction between transient (i.e. event-related potentials, ERPs) and steady-state responses (SSRs). The generation of SSRs is usually attributed to the entrainment of a neural rhythm driven by the stimulus train. However, a more parsimonious account suggests that SSRs might result from the linear addition of the transient responses elicited by each stimulus. This study aimed to investigate this possibility.</p> <p><b>Methodology/Principal Findings::</b> We recorded brain potentials elicited by a checkerboard stimulus reversing at different rates. We modeled SSRs by sequentially shifting and linearly adding rate-specific ERPs. Our results show a strong resemblance between recorded and synthetic SSRs, supporting the superposition hypothesis. Furthermore, we did not find evidence of entrainment of a neural oscillation at the stimulation frequency.</p> <p><b>Conclusions/Significance:</b> This study provides evidence that visual SSRs can be explained as a superposition of transient ERPs. These findings have critical implications in our current understanding of brain oscillations. Contrary to the idea that neural networks can be tuned to a wide range of frequencies, our findings rather suggest that the oscillatory response of a given neural network is constrained within its natural frequency range.</p&gt

    Disorder Effects in Two-Dimensional d-wave Superconductors

    Full text link
    Influence of weak nonmagnetic impurities on the single-particle density of states ρ(ω)\rho(\omega) of two-dimensional electron systems with a conical spectrum is studied. We use a nonperturbative approach, based on replica trick with subsequent mapping of the effective action onto a one-dimensional model of interacting fermions, the latter being treated by Abelian and non-Abelian bosonization methods. It is shown that, in a d-wave superconductor, the density of states, averaged over randomness, follows a nontrivial power-law behavior near the Fermi energy: ρ(ω)ωα\rho(\omega) \sim |\omega|^{\alpha}. The exponent α>0\alpha>0 is calculated for several types of disorder. We demonstrate that the property ρ(0)=0\rho(0) = 0 is a direct consequence of a {\it continuous} symmetry of the effective fermionic model, whose breakdown is forbidden in two dimensions. As a counter example, we consider another model with a conical spectrum - a two-dimensional orbital antiferromagnet, where static disorder leads to a finite ρ(0)\rho(0) due to breakdown of a {\it discrete} (particle-hole) symmetry.Comment: 24 pages, 3 figures upon request, RevTe

    Adler Function, DIS sum rules and Crewther Relations

    Full text link
    The current status of the Adler function and two closely related Deep Inelastic Scattering (DIS) sum rules, namely, the Bjorken sum rule for polarized DIS and the Gross-Llewellyn Smith sum rule are briefly reviewed. A new result is presented: an analytical calculation of the coefficient function of the latter sum rule in a generic gauge theory in order O(alpha_s^4). It is demonstrated that the corresponding Crewther relation allows to fix two of three colour structures in the O(alpha_s^4) contribution to the singlet part of the Adler function.Comment: Talk presented at 10-th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, W\"orlitz, Germany, 25-30 April 201
    corecore