9 research outputs found

    Exostosin 1/Exostosin 2–Associated Membranous Nephropathy

    No full text
    F.C.F. and P.R. contributed equally to this work.International audienceBACKGROUND:In membranous nephropathy (MN), which is characterized by deposition of immune complexes along the glomerular basement membrane (GBM), phospholipase A2 receptor (PLA2R) and thrombospondin type 1 domain-containing 7A are target antigens in approximately 70% and 1%-5% of cases of primary MN, respectively. In other cases of primary MN and in secondary MN, the target antigens are unknown.METHODS:We studied 224 cases of biopsy-proven PLA2R-negative MN and 102 controls (including 47 cases of PLA2R-associated MN) in pilot and discovery cohorts. We also evaluated 48 cases of PLA2R-negative presumed primary MN and lupus MN in a validation cohort. We used laser microdissection and mass spectrometry to identify new antigens, which were localized by immunohistochemistry.RESULTS:Mass spectrometry detected exostosin 1 (EXT1) and exostosin 2 (EXT2) in 21 cases of PLA2R-negative MN, but not in PLA2R-associated MN and control cases. Immunohistochemistry staining revealed bright granular GBM staining for EXT1 and EXT2. Clinical and biopsy findings showed features of autoimmune disease, including lupus, in 80.7% of the 26 EXT1/EXT2-associated MN cases we identified. In the validation cohort, we confirmed that EXT1/EXT2 staining was detected in pure class 5 lupus nephritis (eight of 18 patients) and in presumed primary MN associated with signs of autoimmunity (three of 16 patients); only one of the 14 cases of mixed class 5 and 3/4 lupus nephritis was positive for EXT1/EXT2. Tests in seven patients with EXT1/EXT2-associated MN found no circulating anti-exostosin antibodies.CONCLUSIONS:A subset of MN is associated with accumulation of EXT1 and EXT2 in the GBM. Autoimmune disease is common in this group of patients

    Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy

    No full text
    International audienceMembranous nephropathy is characterized by deposition of immune complexes along the glomerular basement membrane. PLA2R and THSD7A are target antigens in 70% and 1-5% of primary membranous nephropathy cases, respectively. In the remaining cases, the target antigen is unknown. Here, laser microdissection of glomeruli followed by mass spectrometry was used to identify novel antigen(s) in PLA2R-negative membranous nephropathy. An initial pilot mass spectrometry study in 35 cases of PLA2R-negative membranous nephropathy showed high spectral counts for neural tissue encoding protein with EGF-like repeats, NELL-1, in six cases. Mass spectrometry failed to detect NELL-1 in 23 PLA2R-associated membranous nephropathy and 88 controls. NELL-1 was localized by immunohistochemistry, which showed bright granular glomerular basement membrane staining for NELL-1 in all six cases. Next, an additional 23 NELL-1 positive cases of membranous nephropathy were identified by immunohistochemistry in a discovery cohort of 91 PLA2R-negative membranous nephropathy cases, 14 were confirmed by mass spectrometry. Thus, 29 of 126 PLA2R-negative cases were positive for NELL-1. PLA2R-associated membranous nephropathy and controls stained negative for NELL-1. We then identified five NELL-1 positive cases of membranous nephropathy out of 84 PLA2R and THSD7A-negative cases in two validation cohorts from France and Belgium. By confocal microscopy, both IgG and NELL-1 co-localized to the glomerular basement membrane. Western blot analysis showed reactivity to NELL-1 in five available sera, but no reactivity in control sera. Clinical and biopsy findings of NELL-1 positive membranous nephropathy showed features of primary membranous nephropathy. Thus, a subset of membranous nephropathy is associated with accumulation and co-localization of NELL-1 and IgG along the glomerular basement membrane, and with anti-NELL-1 antibodies in the serum. Hence, NELL-1 defines a distinct type of primary membranous nephropathy

    Protocadherin 7-Associated Membranous Nephropathy.

    No full text
    Membranous nephropathy (MN) results from deposition of antigen-antibody complexes along the glomerular basement membrane (GBM). PLA2R, THSD7A, NELL1, and SEMA3B account for 80%-90% of target antigens in MN. We performed laser microdissection and mass spectrometry (MS/MS) in kidney biopsies from 135 individuals with PLA2R-negative MN, and used immunohistochemistry/immunofluorescence and confocal microscopy to confirm the MS/MS finding, detect additional cases, and localize the novel protein. We also performed MS/MS and immunohistochemistry on 116 controls and used immunofluorescence microscopy to screen biopsy samples from two validation cohorts. Western blot and elution studies were performed to detect antibodies in serum and biopsy tissue. MS/MS studies detected a unique protein, protocadherin 7 (PCDH7), in glomeruli of ten (5.7%) PLA2R-negative MN cases, which also were negative for PLA2R, THSD7A, EXT1/EXT2, NELL1, and SEMA3B. Spectral counts ranged from six to 24 (average 13.2 [SD 6.6]). MS/MS did not detect PCDH7 in controls (which included 28 PLA2R-positive cases). In all ten PCDH7-positive cases, immunohistochemistry showed bright granular staining along the GBM, which was absent in the remaining cases of PLA2R-negative MN and control cases. Four of 69 (5.8%) cases in the validation cohorts (all of which were negative for PLA2R, THSD7A, EXT1, NELL1, and SEMA3B) were PCDH7-positive MN. Kidney biopsy showed minimal complement deposition in 12 of the 14 PCDH7-associated cases. Confocal microscopy showed colocalization of PCDH7 and IgG along the GBM. Western blot analysis using sera from six patients showed antibodies to nonreduced PCDH7. Elution of IgG from frozen tissue of PCDH7-associated MN showed reactivity against PCDH7. MN associated with the protocadherin PCDH7 appears to be a distinct, previously unidentified type of MN

    Sustained delivery of dibutyryl cyclic adenosine monophosphate to the transected spinal cord via oligo [(polyethylene glycol) fumarate] hydrogels

    No full text
    This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents

    Sustained Delivery of Dibutyryl Cyclic Adenosine Monophosphate to the Transected Spinal Cord Via Oligo [(Polyethylene Glycol) Fumarate] Hydrogels

    No full text
    This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents

    Journal Pre-proof Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients

    No full text
    International audienceMembranous nephropathy results from subepithelial antigen-antibody complex deposition along the glomerular basement membrane. Although PLA2R, THSD7A, and NELL-1 account for a majority (about 80%) of the target antigens, the target antigen in the remaining cases is not known. Using laser microdissection of PLA2R-negative glomeruli of patients with membranous nephropathy followed by mass spectrometry we identified a unique protein, Semaphorin 3B, in three cases. Mass spectrometry failed to detect Semaphorin-3B in 23 PLA2R-associated cases of membranous nephropathy and 88 controls. Semaphorin 3B in all three cases was localized to granular deposits along the glomerular basement membrane by immunohistochemistry. Next, an additional eight cases of Semaphorin 3B-associated membranous nephropathy were identified in three validation cohorts by immunofluorescence microscopy. In four of 11 cases, kidney biopsy also showed tubular basement membrane deposits of IgG on frozen sections. Confocal microscopy showed that both IgG and Semaphorin 3B co-localized to the glomerular basement membrane. Western blot analysis of five available sera showed reactivity to reduced Semaphorin 3B in four of four patients with active disease and no reactivity in one patient in clinical remission; there was also no reactivity in control sera. Eight of the 11 cases of Semaphorin 3B-associated membranous nephropathy were pediatric cases. Furthermore, in five cases, the disease started at or below the age of two. Thus, Semaphorin 3B-associated membranous nephropathy appears to be a distinct type of disease; more likely to be present in pediatric patients

    Neural Stem Cell– and Schwann Cell–Loaded Biodegradable Polymer Scaffolds Support Axonal Regeneration in the Transected Spinal Cord

    No full text
    Biodegradable polymer scaffolds provide an excellent approach to quantifying critical factors necessary for restoration of function after a transection spinal cord injury. Neural stem cells (NSCs) and Schwann cells (SCs) support axonal regeneration. This study examines the compatibility of NSCs and SCs with the poly-lactic-co-glycolic acid polymer scaffold and quantitatively assesses their potential to promote regeneration after a spinal cord transection injury in rats. NSCs were cultured as neurospheres and characterized by immunostaining for nestin (NSCs), glial fibrillary acidic protein (GFAP) (astrocytes), βIII-tubulin (immature neurons), oligodendrocyte-4 (immature oligodendrocytes), and myelin oligodendrocyte (mature oligodendrocytes), while SCs were characterized by immunostaining for S-100. Rats with transection injuries received scaffold implants containing NSCs (n = 17), SCs (n = 17), and no cells (control) (n = 8). The degree of axonal regeneration was determined by counting neurofilament-stained axons through the scaffold channels 1 month after transplantation. Serial sectioning through the scaffold channels in NSC- and SC-treated groups revealed the presence of nestin, neurofilament, S-100, and βIII tubulin–positive cells. GFAP-positive cells were only seen at the spinal cord–scaffold border. There were significantly more axons in the NSC- and SC- treated groups compared to the control group. In conclusion, biodegradable scaffolds with aligned columns seeded with NSCs or SCs facilitate regeneration across the transected spinal cord. Further, these multichannel biodegradable polymer scaffolds effectively serve as platforms for quantitative analysis of axonal regeneration
    corecore