14 research outputs found

    A fast vibro-acoustic response analysis method for double wall structures including a viscothermal air layer

    Get PDF
    The damping behaviour of a thin air layer between two flexible panels can be used to reduce sound radiation of structural excited panels. The numerical model of the double wall panels takes into account full acousto-elastic interaction and viscothermal wave propagation in the air layer. This means that the resulting system matrices are complex and frequency dependent which makes it difficult to perform response calculations. In this paper a very efficient calculation method is presented which is based on the superposition of uncoupled structural and acoustic eigenmodes. The frequency dependent behaviour is implemented by updating the reduced acoustic submatrices for each frequency step. The method is successfully implemented in the B2000 processor B2FRF

    Advanced stochastic method for probabilistic analysis

    Get PDF

    Dynamic characterisation of a damaged composite structure with stiffeners employing fibre bragg gratings

    Get PDF
    One of the key issues in composite structures for aircraft applications is the early detection and localisation of damage. Often service induced damage does not involve visible plastic deformation, but internal matrix related damage, like transverse cracks and delaminations. Their detection imposes costly maintenance techniques. Vibration based damage identification methods are promising as an alternative for the time consuming and costly Non-Destructive Testing methods currently available. These methods also offer the potential to be used in a real-time health monitoring system. The measured change of the dynamic properties is employed to identify damage such as delaminations.\ud Earlier performed research [1] showed that the Modal Strain Energy Damage Index algorithm [2] is a suitable method to identify impact induced damage in a fibre reinforced composite plate structure with stiffeners using laser vibrometer measurements. The damage identification algorithm requires the computation of the second derivative of the displacement mode shapes.\ud The goal is to extent this research by applying fibre Bragg gratings since they can be valuable. Firstly, optical fibre sensors are suitable for integration, which is required in a Structural Health Monitoring environment. Secondly, measured strain mode shapes could be advantageous with respect to the numerical errors induced by the computation of second derivatives of the displacement mode shapes.\ud Before applying the damage identification algorithm, it is a challenge to accurately extract the dynamic properties. The dynamic properties of a damaged composite T-shaped stiffener section, shown in figure 1, are investigated in this work using fibre Bragg gratings

    Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients

    Get PDF
    Background: To quantify the association between effects of interventions on carotid intima-media thickness (cIMT) progression and their effects on cardiovascular disease (CVD) risk. Methods: We systematically collated data from randomized, controlled trials. cIMT was assessed as the mean value at the common-carotid-artery; if unavailable, the maximum value at the common-carotid-artery or other cIMT measures were used. The primary outcome was a combined CVD end point defined as myocardial infarction, stroke, revascularization procedures, or fatal CVD. We estimated intervention effects on cIMT progression and incident CVD for each trial, before relating the 2 using a Bayesian meta-regression approach. Results: We analyzed data of 119 randomized, controlled trials involving 100 667 patients (mean age 62 years, 42% female). Over an average follow-up of 3.7 years, 12 038 patients developed the combined CVD end point. Across all interventions, each 10 μm/y reduction of cIMT progression resulted in a relative risk for CVD of 0.91 (95% Credible Interval, 0.87–0.94), with an additional relative risk for CVD of 0.92 (0.87–0.97) being achieved independent of cIMT progression. Taken together, we estimated that interventions reducing cIMT progression by 10, 20, 30, or 40 μm/y would yield relative risks of 0.84 (0.75–0.93), 0.76 (0.67–0.85), 0.69 (0.59–0.79), or 0.63 (0.52–0.74), respectively. Results were similar when grouping trials by type of intervention, time of conduct, time to ultrasound follow-up, availability of individual-participant data, primary versus secondary prevention trials, type of cIMT measurement, and proportion of female patients. Conclusions: The extent of intervention effects on cIMT progression predicted the degree of CVD risk reduction. This provides a missing link supporting the usefulness of cIMT progression as a surrogate marker for CVD risk in clinical trials

    Euclid RTP 3.18 Vibrant Milestone 4 report

    No full text
    Confidentia

    A DIANA-element for the dynamic analysis of laminate plates

    Get PDF
    This paper describes the main characteristics of a new DIANA elemnt to trent. The dynamic behaviour of structures made of three-layer laminate plate, including the effect of damping. This element is not only suited for laminates with two metal skins and a viscoelasticlayer, but alsofor composite materials like ARALL. Sample calculations are presented showing the effect of a viscoelastic layer on the dynamic characteristics. In addition attention is paid to interaction of the vibrating structure with a surrounding fluid

    Advanced landing gear fibre Bragg grating sensing and monitoring system

    No full text
    In this paper an advanced optical-based landing gear load sensing and monitoring system is presented. The system measures strains using fibre Bragg grating sensor that are converted into loads and torque at the landing gear wheels and provides this data for use by the aircraft systems for integration with aircraft health monitoring, hard landing detection, flight management, flight controls and ground controls. A complete sensing system was developed in the European Union Clean Sky 2 Joint Technology Initiative Advanced Landing Gear Sensing and Monitoring (ALGeSMo), described herein. This involved: the integration of optical fibres into a composite structure, the development of an optical harness (cabling and connectors) meeting aircraft installation requirements, the readout of the optical fibre sensors with state-of-the-art miniature optoelectronics and the processing and communication of the data. Apart from specific tests on the various components, a bespoke test rig was developed to rigorously test the whole sensing and monitoring system on an A320 main landing gear slider tube to validate the performance of the system. The system-level tests performed on the test rig showed a very good correlation with applied actuator loads and additional conventional strain and temperature sensors. It demonstrates that loads along all three axis of the landing gear and the torque about the wheel axle can be accurately measured. Tests performed at cold and elevated temperatures, however, revealed that the generally applied one-dimensional temperature compensation equation is not accurate enough for this application, due to the non-uniform non-stationary temperature field. The ALGeSMo research activities have advanced the state of the art in several key areas for the deployment of optical sensing systems for safety-critical applications, such as integration of optical fibres into composite material, robust optical connections, avionic-compliant optical interrogator and landing gear load measurement up to technology readiness level technology readiness level 5
    corecore