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Abstract. This paper describes the main characteristics of a new DIANA element to freat the dynamic
behaviour of structures made of thres-layer laminate plate, including the effect of damping. This element is not
only suited for laminates with two metal skins and a viscoelastic layer, but also for composite materials like
ARALL. Sample caleulations are presented showing the effect of a viscoelastic layer on ‘the dynamic
characteristics. In addition attention is paid to the interaction of the vibrating structure with a surrounding fluid.

1. Introduction .

Laminated plates offer benefits such as lighter structures or more energy dissipation
(higher damping values) compared to the more traditional materials. For this reason
many publications appeared in this field. For a good overview on the publications in this
field reference is made to papers by Bert [2] and by Noor and Burton [8].

There are different ways in modelling a

laminate plate. The first one is to treat it as a DEFORMED SHAPE

single-layer plate with an equivalent stiffness, . .
in which the displacements across the thick- / /
ness are described with a single expression - ’
(see figure 1). / /
A second way to model a laminate plate is a

layer-wise description, in which the displace- SINGLE-LAYER LAYER-WISE
ments of every layer are described by separate MODEL MODEL
functions, continuous through the thickness, Fig 1: Single-layer and
including the layer interfaces (see figure 1), layer-wise model

A combination of the single-layer and layer-

wise models is also a possibility. In that case

adjacent layers are grouped together into so-called sublaminates. In each sublaminate the
displacement field is continuous through the thickness. On the interfaces of the different
sublaminates, the displacement fields are taken continuously. =

Various combinations can be used for the polynomial order of the displacement ﬁelds
For the inplane displacements in many cases a linear function over the thickness is used
and the transverse displacement is supposed to be constant through the thickness. These
are the first-order theories. '

The Kirchhoff theory, also called classical plate theory (CPT), is an example of such an
approach. The transverse shear strains are put zero, so this theory cannot represent shear
deformations and it is only valid for thin plates. Another first-order theory is the Mindlin
theory where the shear deformations are assumed to be constant through the thickness.
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For this reason this theory is also known as the first-order shear deformation theory. The
Mindlin theory results in constant transverse shear strains through the element thickness
and thus provides constant transverse shear stresses.

2, Model Description

For the present purpose a layer-wise model is combined with a first-order plate theory.
Reasons for not using a higher order theory are the lower number of degrees of freedom
involved and the fact that the dynamic behaviour of a laminate plate is well described by
a first-order theory, The dynamic behaviour is a global phenomenon and local differences
will be cancelled out by taking the integral over the domain. The distribution of the
transverse shear stress is not accurately represented, because this is a local phenomenon.
The first-order theory used here is the Reissner-Mindlin theory, because it can represent
shear deformations.
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Fig 2: Model degrees of freedom

The finite element treated in this paper consists of three layers. The displacement fields
are:

Ei(X;Y:z) = ui(xs ) - eﬁ(X,}')zi

_ (-%h; < z <-3h)

FEyD) = vixy) - 0,z , | )
i=1.23"

wizy,z) = wixy) -

Where i is the layer-index. The displacements of a point on the reference plane of the i"
laminate layer are given by u;, v; en w;, while 0, and 6,; denote the rotations about the y
and x axis and z the coordinate in thickness direction, which is zero on the reference
plane of the corresponding layer (see figure 2).

The normal strains become:

du, 96 av o8
B =—-Z,— ; ¢ A St (2)

=i ax ax woay gy
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The shear strains become:

au, v, [oe, a0,
Vo= — g | S % (in plane) ®)
ey ox '( dy ox '
Vigs = ‘;;: -0, ; Yo = ow _ Byi (trancverse) )

dy

Further the following assumptions are made:

1 The normal stresses in thickness direction are neglected as is done in all plate
theories, so: 0,=0. This means that the thickness of the plate is supposed to be
smali compared to its length,

2 The strain in thickness direction (g,)) is zero, because of the constant transverse

displacement field. This is only valid when the layer material is sufficiently stiff in

thickness direction.,

The model is supposed to be linear, which means small displacements and strains.

4 There is no slip between the layers. This assumption results in four interface
conditions for the two interfaces.

[¥%)

In the model an arbitrarely situated point in the (x-y)-plane contains 15 degrees of
freedom: 5 per layer. The four interface relations combined with the condition of a
constant transverse displacement reduces this number to 9.

The degrees of freedom chosen are (see figure 2):

- the inplane displacements of both skin-layers (u,, v, u,, v3),

- the transverse displacement (w) and

- the two rotations around the inplane axis of the two skin-layers (6,,, 0,,, 6,5, 6,3).
The five degrees of freedom of the midlayer can be expressed in those of the skin-layers.

Next the assumption is made that the rotations of the two skin-plates are equal, so:

e::l = axz = ex N Byl = eyS = ey (5)
This assumption is justified for laminated plates, which are symmetric in-thickness
direction or which have thin skin plates. For strongly asymmetric -laminates, this

assumption will introduce only a small error. After the introduction of (5) the final
number of degrees of freedom in a point of the laminate plate is reduced from 9 to 7.

The strain energy IT;, of a three-layer laminate element (area A) can be split up into three
parts, i.e. the energies due to membrane (m), bending (b) and shear (s) deformations:

3
m, = 1) (hi:{{enﬂlT [E] le,} dA + %hf[{ebi}'r [B] fe,} dA +

i=X

6
+ b [T [G) ) dA)
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where:
du, a0,
ox ox ow 0
av, | 8y x = .
e ) =9 — f 5 1Bl = - 3 1By =
mi ay b ay Al EE _a ( )
i
oy, &, 0y , 20 ”
oy ox | oy ox |
and in case of an orthotropic material behaviour:
E_ vaxy 0 ,
1 V¥ I-vxyvy‘ -k—G” o
x
[E]l= Envy: EW 0 : [G}= . 8)
1"’,,-",.: l—\ww\vwL 0 —;ny .
0 0 G| !
J1

in which k, and k, are the shear factors for the x-direction and y-direction, respectivily.

The kinetic energy T of the three-layer laminate element equals:

3 h-3
_ 1 L2 L2 L2y Py 22 =2 9
T—;Z pihi:((ui+\.ri +wYdA + 5 {(eﬂwﬁ)d;\ . ®

i=1

The first term of the kinetic energy is due to longitudinal and transverse inertia and the
second due to rotatory inertia.

At this stage of the formulation it becomes important to choose the type of element. In
this study an isoparametric Mindlin-type of element is selected. This kind of element
behaves very well compared to other types of elements, e.g. discrete-Kirchhoff elements
and the formulation is relatively simple. The only disadvantage of-these elements is their
sensitivity for shear-locking, This can be avoided by using a reduced integration rule for
the shear deformation part of equation (6). This may introduce so-called zero-energy
modes (also called mechanisms). These are modes with a non-zero deformation, for
which the elastic energy becomes zero, leading to a singular stiffness matrix.

Triangular elements do not behave well if a reduced integration is applied. Cook, Malkus
and Plesha [4] showed that from the rectangular elements, the 4-node element (bilinear
element) and the $-node element (Lagrange element) are very susceptible to zero-energy
modes, especially when also for the bending deformation a reduced integration rule is
used. The 8-node element {Serendipity element) is free of zero-energy modes under the
condition that only the shear deformation part is integrated with a reduced rule and the
bending deformation part with a full integration rule (selective integration). Another
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variant is the Heterosis element, which also consists of nine nodes, but where the mid-
node only has rotations as degrees of freedom. This element tries to inherit the good
properties of both the Lagrange and the Serendipity element, which explains the name
Heterosis. In contrast to the Serendipity element the Lagrange element behaves well for
very thin plates.

Both the Serendipity and Heterosis element have been implemented in DIANA, but only
the Serendipity element will be discussed here, because both elements have the same
behaviour in dynamic analyses.

The discretization of the displacements and rotations for the Serendipity element gives:
£ ] 8 £ B
ui=kz: N, uy ;vi=§ Nyvysw =§ N, w, ; eﬁ=kz; N, 6, ; eyi=kE N8  (10)
-1 - - - =1

Here N, = Ny(x,y) represents the k™ shape or interpolation function. These expressions
substituted in (7), (6) and (9) and applying Lagrange's principle gives, after summation
over the elements, the set of equations of motion of the structure:

M1} + K1) = {F) (11)

in which [M], [K] and {F} respectively are the assembled mass matrix, the stiffness
matrix and the force vector. The vector {u} contains the structural degrees of freedom.
The eigenvalues of the system can be determined from the homogeneous form of this
matrix-vector equation.

3. Numerical Tests: Static Analysis

For a first validation of the static behaviour of the new element (denoted as CQ56L and
in the latest version of DIANA as MLAYSH), we consider a uniformly loaded (q)
laminated square plate, which is simply supported at all its edges and which is modelled
with 10 by 10 CQ56L-elements. The three layers are of equal thickness and have the
same material properties. The material is isotropic.
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Fig 3: Relative deflection against length to thickness ratio
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The results are depicted in figure 3, showing the normalized maximum deflection of the
plate against the ratio of its length (L} and thickness (h). The deflection is normalized
with the corresponding value obtained with the Kirchhoff theory. The normalized
deflection should converge to unity for large values of L/h (thin plate), because then the
shear deformation is negligible, which is a basic assumption in the Kirchhoff theory. For
L/h values larger than 3.10° there is no longer convergence to unity caused by the shear-
locking phenomenon. An improvement is possible by introducing lower shearfactors k,
and k,. This factors may be chosen such, that they are a function of the ratio of the
element magnitude and the element thickness as mentioned in ref. {1,9].

For small L/h values the solution deviates from unity, because the KirchhofF theory is no
longer valid. The same behaviour is observed in the literature on this element. The results
for the laminate element, CQ56L, are also compared with the results of the non-laminate
shell element in DIANA, CQAOF (see also figure 3). From this figure it can be concluded
that for static problems the laminate plate element shows the same behaviour as other
shell elements do, as long as the element length to thickness ratio is not too large.

4. Numerical Tests: Dynamic Analysis

" The dynamic behaviour of the laminate element has been validated against numerical
values published by others for a 'thick' isotropic plate, for a 'thick' orthotropic plate and
for a cross-ply laminate plate. :

4.1 Thick Plate of Isotropic, respectively Orthotropic Material

The plate considered here is a square plate, which is simply supported at all its edges.
The length to thickness ratio L/h is 10. The plate which in fact consists of only one type
of material is modelled with the laminate element by taking the layers equally thick with
the same material properties. The plate is discretized again with 10 by 10 elements. The
results are presented as the natural frequencies Q, which are made dimensionless
according to:

Q= th% (12)

Where C is a relevant material stiffness property. In the presented example of orthotropic
material the relationship between the two elasticity moduli'is E,, = 2.E,,. For further
details see ref, [6].

The shear factor is taken 1.1 for both cases. This is somewhat lower than usually applied
in the Mindlin theory (1.2). It can be shown, see ref. [6], that the factor 1.1 provides a
better approximation of the shear energy for layered models.

A selection of the natural frequencies of the flexural (I) and extensional modes (II, ITI},
from [6], is presented in table 1 for the isofropic case and in table 2 for the orthotropic
case. For extensional mode II the deformations in x- and y-direction do have the same
sign (both tension or both compression), for extensional mode III the opposite takes
place. The frequencies are compared with the exact values derived with the 3D-elasticity
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theory and with numerical values calculated with a higher-order theory presented by
Cho, Bert and Striz [3]. Cho ea. used third-order polynomials for the inplane
displacement fields and a quadratic polynomial for the out-of-plane displacement field,
combined with a layer-wise model. This model should deliver the most accurate results.
The results calculated with the model of Cho e.a. are also presented in table 1. The plate
is treated as a single-layer (N=1) and as a four-layer laminate (N=4), respectivily.

From the table it can be concluded that the results obtained with the laminate element
show good agreement with the exact values and with the results of the higher order
theory.

Theory Isotropie Orthotropic
Mode I I 11 Mode I I I
Exact 11 0.0931 0.7498 0.4443 it 0.0474 0.3941 0.2170
CQ56L 0.0930 0.7510 0.4443 0.0474 0.3940 0.2170
Cho (N=1) 0.0930 0.7516 0.4443 0.0474 0.3941 0.2170
Cho (N=4) 0.0931 0.7499 0.4443 0.0474 0.3941 0.2170
Exact 12 0.2226 1.1827 0.7025 12 0.1033 0.5624 0.3450
CQ56L 0.2219 1.1875 0.7025 0.1032 0.5626 0.3452
Cho (N=1) 0.2219 1.18%7 0.7025 0.1033 0.5626 0.3451
Cho (N=4) 0.2224 1,1832 0.7025 0.1033 0.5624 0.3450
Exact 13 04171 1.6654 0.9935 13 0.1888 0.7600 0.4953
CQS56L 0.4152 1.6800 0.9939 0.1885 0.7611 0.4957
Cho (N=1) 0.4147 1.6856 0.9935 0.1385 0.7610 0.4955
Cho (N=4) 0.4164 1.6668 0.9934 0.1887 09601 0.4953

Table 1: Comparison of the dimensionless natural frequencies Q of a homogeneous plate of isotrapic,
respectively orthotropic material

4.2 Cross-ply Laminate

In table 2 the natural frequency of the first flexural mode of a three-layer (0°/90°/0°) and
a two-layer (0°/90°) cross-ply laminate are presented for various length to thickness
(L/h) ratios, The laminate plate is again simply supported at all its edges. The material
properties are:

E/Ex=4 ; Gy /E,=06; v, ;=025 G./E,=06 ; G,/E,=05; k=11
In the present example the dimensionless frequency is defined by:

L2 [
o= G)T —E— (13)
¥y
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The numerical results obtained with the laminate element for the three-layer laminate
(CQ56L) agree very well with the results presented by Cho e.a. for L/h = 10. In this
region the difference is less than 1 percent. This difference increases for smalier L/h
ratios (very thick plates). This is due to the fact that the assumptions ¢,,=0 and e_=0
{plate theory) are no longer valid here. Cho e.a, did not make this assumption (resulting
in substantially more degrees of freedom), so his results will be more accurate, However,
to the authors' opinion one should not use plate elements to model these situations, but
volume elements.

L/ three-layer (0°/90°/0°) two-layer (0°/90°)
CQ56L %Emor Choea. CPT CQs6L %Emor Choea. CPT
to Cho to Cho

2 5.242 13.0 5.923 15.830 5.216 g.44 4.810 8.499
5 10.565 1.02 10.673 18.215 8.819 5.14 8.388 10.584
10 14.965 0.67 15.066 18.652 10.467 1.92 10.270 11.011
20 17.589 0.31 17.535 18.767 11.077 0.55 11.016 11.125
25 18.023 0.17 18.054 18.780 11.158 0.36 11.118 11.13%
50 18.661 0.05 18.670 18.799 11.270 0.09 11.260 11.158
100 18.833 0.01 18.835 18.804 11,299 0.03 11,296 11.163

Table 2: Comparison of the dimensionless natural frequencies , of a cross-ply three-layer (0 790 %0 %) and a
two-layer (0 Y90 %) square lominate plate

The results for the two-layer laminate show only slightly larger deviations, even though
the laminate is asymmetric in material properties and modelling (the 90° layer is
modelled by two layers of the element). So also in this case it is justified to assume equal
rotations of the two skin plates.

Table 2 confirms the expectation that the classical plate theory (CPT) is not able to
represent the real dynamic behaviour of the cross-ply laminate.

4.3 Laminate Plate with Viscoelastic Midlayer -~

One¢ of the aims of the present study was to include the damping effect of a viscoelastic
midlayer. For this purpose complex elasticity constants are introduced:

E,=E,(1+if) and G, =G, (1 +ip)

with E,, G, and §§ being the elasticity modulus, the shear modulus and the so-called loss
factor, respectively.

As a first application the dynamic response of a square laminate plate was considered,
excited by a uniformly distributed, harmonic load. The plate was simply supported at all
edges. The dimensions were chosen fully arbitrarely, to obtain convenient natural
frequencies. The amplitude of the load was 10° N/m? and the frequency of oscillation was
varied between 3 and 4.2 Hz with steps of 0.02 Hz. The amplitude of the centre of the
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plate as a function of the frequency, presented in figure 4, clearly reveals not only the
presence of a resonance frequency around 3.6 Hz but also the effect of the loss factor
on the amplitude.

It can be observed that, in contrast with the expectations, an increase in loss factor is
coupled with an inerease in resonance frequency. This phenomenon has been observed
earlier by Durocher and Solecki [5] and a physical interpretation has been attempted by
Locht [7] with the help of an equivalent two-degrees-of-freedom system.

L=100m 0.60
k=1,8,1m(=1,2,3)

0.50
skin plates: '§ o0
E,=E,=69 GPa ="
p1= p; =2700 kg/m’ E osof
v, =v;=0.3333

020
midlayer:
E,=2.4 GPa 010
p,= 1022 kg/m® oo
v, =0.3333 T280 a1 330 350 870 390 410 430

frequency (Hz)

Fig 4: Response of a simply supported laminate plate with viscoelastic midlayer
Jor f=01,0305ad L0

4.4 Acoustic Coupled Laminate Plate with Viscoelastic Midlayer

The final example is meant to illustrate the combined effect of the presence of visco-
elastic damping and the acoustic coupling with the surrounding air on the dynamic
behaviour of a square laminate plate. For details on the way in which this coupling is
achieved in DIANA reference is made to [1]. '

The example taken from [7] concerns a closed cavity, at one side covered with a flexible
laminate plate. All other walls are assumed to be rigid (see figure 5). -

The material properties of the laminate and the dimensions of the cavity are chosen such
that the natural frequencies of the plate without the effect of the air ('uncoupled') are not
too far apart from the natural frequencies of the 'uncoupled' acoustic modes (i.e. the
acoustic modes in the cavity with all walls rigid).

Since it was the intention to consider only the lowest double-symmetric modes of the
plate, it suffices to model one quarter of the box (see figure 5) . The plate was modelled
with 4 8-node laminate plate elements (MLAY SH-Serendipity-version), the air with 5 x
16 acoustic elements (HX8HT) and the interface plate-air with 4 interface elements
(BQ2489). For the determination of the resonance frequencies of the coupled system, the
plate was excited in its centre by means of a harmonic normal force with a frequency
ranging from 12 to 20 Hz.
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Fig 5: Example of acousto-elastically
coupled laminate plate

Material properties laminate:
E,=210GPa ; p,=2400kg/m’; v, =03
E,=0.024 GPa; p,=1100kg/m*; v,=03; =05
E,;=210GPa ; p,=~2400kg/m*; v;=03

air: velocity of sound: 340 m/s ; p = 1.125 kg/m®

dimensions laminate: h, =h,=02mm ; h,=0.6 mm

The results of the computations of the response of
the system are collected in table 3 and examples of
the frequency response functions in terms of
displacements and pressure perturbation in the
centre of the plate versus frequency are depicted in
figure 6. Table 3 reveals that the uncoupled reso-
nance frequency of the plate increases from 14.97 to
15,11 Hz when the loss factor P is increased from 0
to 0.5. The coefficient of (structural) damping, m, of
the overall system becomes 0.291.

Due to the presence of the air in the cavity the
resonance frequency of the plate decreases from

14.97 to 14.25 for P=0 and from 15.11 to 14.60 for B=0.5. In the latter case the
coefficient of damping n decreases from 0.251 to 0.240,

B UNCOUPLED MODES COUPLED MODES COUPLED MODES light
FREQ | 1 TYPE | FREQ 1 TYPE | FREQ 1

00 | PLATE | 1497 - s 1425 - 8 12.05 -
AR 17.28 - A 18.05 - A 20.80 -
0.5 plate 1511 | 0291 sd 1460 | 0240 sd 1222 | 0182
air 17.28 - Ad 1793 { 0043 Ad | 2085 | 0058

Table 3: Natural frequencies of uncoupled air and laminate plate, and the coupled system

18401 18408]
18400 is hs . A
}\ A 18404 # .
5 1e-01 - + g l‘l\ 1
-3 L—— - 3
2 et S e -~ = = 7 A Y
hd T
1803 V\\‘\:/ Sl L L
V Tus // Sd
104 I
"'“12 13 14 15 18 17 18 18 0 1.’0112 13 14 13 1" 17 18 1% 20
frequente {Hz) frequentie {Hz)
§ = structure dominated A = acoustic dominated d = damped

Fig 6: Frequency response functions of the acousto-elastic coupled system
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The frequency of the uncoupled acoustic mode increases from 17.28 to 18.05 Hz
without viscoelastic damping (B=0) and from 17.28 to 17.93 Hz for p=0.5. In the last
mentioned situation the acoustic mode becomes also damped (1=0.043). Evidently, in
this example, the plate experiences the air enclosed in the cavity as an additional mass.
Moreover, the coupled acoustic mode becomes damped because of the accompanying
motion of the plate.

The influence of the air enclosed in the cavity on the dynamic behaviour of the laminate
plate becomes more pronounced for a structure which has iess mass. This is
demonstrated by reducing both the stiffness coefficients and the densities of the laminate
plate with a factor 10. This has no effect on the 'uncoupled' resonance frequency but
seriously affects the interaction between the vibrating plate and the air. The results are
given in table 3 under the header 'COUPLED MODES light'.

5. Conclusions

The results of the new three-layer laminate element (CQS6L - MLAYSH), based on a
first-order shear deformation theory for the inplane displacement fields and a constant
out-of-plane displacement field, in combination with a layer-wise model, show a very
good agreement with the higher order-model used by Cho e.a.. The element is suited to
determine the dynamic behaviour of thin and thick isotropic and orthotropic plates as
well as cross-ply and angle-ply laminates, including the effect of viscoelastic damping.
With the capability to use this element in combination/interaction with acoustic elements
a new 'tool’ has been added to DIANA which enables the study of problems related with
noise and noise abatement.
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