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ABSTRACT

Recently at NLR a very efficient stochastic method has been implemented for probabilistic analysis. The
method is a so-called Second-Order Reliability Method (SORM). The basis of the method is formed by an
efficient optimization scheme applied to find the safety index (most probable point) after which second-
order information is added to the solution by solving one of Tvedt's formulas. The optimization scheme is
based on the approximate model concept, approximating the objective and constraints (limit-states) by
means of second-order Taylor series at some starting point. Next, the approximate model can be
optimized using standard optimization techniques giving a better estimate of the optimum. Around this
optimum a new approximate model is formed and optimized. These steps are repeated until the optimum
has been found. Special features have been applied to minimize the number of expensive limit-state
function evaluations and prevent oscillation of the solution. Furthermore, an efficient scheme has been
implemented to transform non-normal dependent variables to a set of normal independent variables.
The method has been implemented in a computer code called RAP (Reliability Analysis Program), which
can be used on top of any existing deterministic program, e.g. finite element program or crack growth
program. The accuracy, correct implementation and performance are demonstrated by two examples.

KEYWORDS

Stochastic method, probabilistic analyses, SORM, optimization.

INTRODUCTION

In this paper a method is presented to calculate the
probability of a problem, of which one or more of
the model parameters are random variables, i.e.
statistically determined. Mathematically this can
be stated as:

xd)xf(=0))XP(G(=p
0)xG(

∫
≤

≤ (1)

in which p is the chance (probability), f(x) the
Joint Probability Density Function (JPDF) of
the vector of random variables X, such as material

parameters, dimensions and loads. G(x) is called
the limit-state function (also referred to as
failure mode or performance function) and is
defined such that failure occurs when G(x)
becomes less than zero (failure domain). The
domain where G(x) equals zero is called the limit-
state.
This is a very general expression, which is
applicable to every type of stochastic problem.
The objective of a stochastic analysis is to obtain
the solution of this equation, i.e. solving a
multi-dimensional integral equation. This, in
general, is not an easy task due to the following
reasons:
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• The integral equation is multi-dimensional,
depending on the number of random
variables.

• In general, the joint probability density
function f(x) will be unknown in explicit
form. If known, it consists of complex
functions, e.g. exponential and power
functions.

• In general, the limit-state function G(x) will
be unknown in explicit form and often is
rather complicated, requiring for example a
finite element analysis.

In order to obtain a solution of this equation a
number of stochastic methods are available, such
as: direct integration, Monte-Carlo simulations,
importance sampling, first- and second-order
reliability methods.
For these numerical stochastic methods the
limit-state function G(x) must be evaluated for
several values of the random variables, which can
be very time consuming. Such a limit-state
function evaluation will be called a function
evaluation throughout this paper. Basically, all
the numerical stochastic methods differ from each
other in the way they perform the function
evaluations, i.e. which values of the random
variables are chosen for the next function
evaluation. In general, the more complex the
algorithm that is used, i.e. the more knowledge of
the characteristics of the problem is implemented
in the algorithm, the less function evaluations are
needed to obtain a reliable solution.
For our purpose (structure reliability) we are
interested in a method which is able to determine
small probabilities requiring as less function
evaluations as possible, because the probability
values of interest for aircraft structural
components (probability of failure) are rather
small (in general less than 10-4) and the limit-state
is known only implicitly requiring considerable
computer time to evaluate (finite element
software, crack growth programs).
For example, in case of the very well known and
widely used Monte-Carlo method the number of
simulations (function evaluations) required to
obtain a reliable result for probabilities of the
order of 10-4, would be of the order 106, which is
very unrealistic in case evaluations require finite
element analyses.
In the past 20 years more efficient stochastic
methods, than the Monte-Carlo method, have been
developed. Among them are the First-order
Reliability Method (FORM) and Second-order
Reliability Method (SORM). Which are here the
most promising methods and are explained in
more detail. SORM is an extension of FORM

resulting in a higher accuracy. The number of
function evaluations of these methods strongly
depends on the scheme used to find the so-called
most probable point, which is the main subject of
this paper.
Both, FORM and SORM, as well as the
Monte-Carlo method are implemented in the
computer program RAP (Reliability Analysis
Program). In chapter 1 the FORM method is
discussed and in chapter 2 the SORM method. In
chapter 3 the capability and accuracy of these
stochastic methods and the correct implementation
is demonstrated by analysing two problems.

1 FIRST-ORDER RELIABILITY
METHOD (FORM)

1.1Introduction

In general, the solution of the multi-dimensional
integral (1) is complicated. However, provided
some special conditions have been satisfied this
multi-dimensional integral can be reduced to a
one-dimensional integral equation with known
solution. These restrictions are:
1) All the random variables have a standard

normal distribution function
2) All the random variables are independent of

each other.

In this case the joint probability density
function becomes a multiplication of the
probability density functions of the separate
random variables, which are known functions.

..)xf()xf()xf(=,..)x,x,xf(=)xf( 321321

3) The limit-state is a hyper plane.
Which means that the limit-state is a linear
combination of the random variables. In
two-dimensions (two random variables) the
limit-state is represented by a line. In three
dimensions by a plane, etc.

On first sight these restrictions seems very tight
and not very realistic, however the first two
restrictions can be overcome by applying
appropriate transformations to the problem, i.e.
transforming a set of dependent random variables
into a set of independent variables and
transforming non-normal variables into standard
normal variables (see sections 1.3 and 1.4).
The third restriction implies that the real
limit-state is approximated by a hyper plane, in
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two dimensions a straight line, i.e. linear function
or first-order polynomial, at the location of the
most probable point. The method therefore is
called a first-order method. For a broad range of
problems this is a reasonable approximation.
However, if the limit-state has a large curvature
this approximation causes a considerable error.
One way to reduce this error is by increasing the
order of the polynomial approximation (SORM).
Having satisfied the above three conditions it can
be proven that the multi-dimensional integral
equation transforms into a one-dimensional
integral with known solution, that is:

)�(-�=xd)xf(=0)P(G=p
0)xG(

∫
≤

≤ (2)

where Φ is the standard normal Cumulative
Distribution Function (CDF) and β the so-called
safety index or most probable point (MPP). The
last name reflects the fact that β can be interpreted
as being the point on the limit-state with the
smallest distance to the origin of the JPDF
(consisting of independent standard normal
distributions), being the point with the highest
probability, i.e. most probable point at which the
structure will fail. Figure 2 gives the graphical
interpretation of β (MPP) for the two dimensional
case.
In this way the stochastic problem is reduced to
finding the point on the limit-state (G(x)=0) with
the smallest distance to origin, which is nothing
else then a minimalisation problem. Solving the
multi-dimensional integral equation is replaced
by solving an optimisation problem. The
optimisation problem yields:

t)(Constrain0)xG(:toSubjected

)(Objectivexx:Minimise T

=
(3)

There are numerous ways in which this
minimalisation problem can be solved. A few are
discussed in [8]. In this paper another very stable
and efficient approach will be discussed in more
detail.

1.2 Determination of most
probable point

1.2.1 Introduction

In section 1.1 it has been explained how the
stochastic problem defined by the integral

equation (1) can be reformulated into a first-order
minimalisation problem of equation (3), provided
some specific requirements have been fulfilled.
The method to solve this optimisation problem is
discussed in this section. The objective of the
optimisation problem is finding the most probable
point (MPP), i.e. the point with the smallest
distance to the origin of the JPDF.
Hasofer and Lind [6] are the founders of the
FORM method in crude form. They defined the
safety index/MPP β and assumed that all the
variables are standard normal distributed.
Rackwitz and Fiessler [9] suggested a simple
iterative scheme with which this safety index or
most probable point could be determined. Due to
its simplicity, it is a widely used approach, but has
the disadvantage that the method does not always
converge and requires a considerable amount of
function evaluations. Therefore, a better
optimisation scheme has to be applied. Liu and
Der Kiureghian [8] analysed a number of
optimisation schemes of which some showed
good convergence for various problems, but
lacked efficiency. Therefore, another approach is
adopted here, which is known as the approximate
model concept. The idea behind it is fairly
simple. Before explanation of this method first a
number of terms are introduced in order to
generalise the idea.

1.2.2 Approximate model concept

Equation (3) states the optimisation problem to be
solved. The function, which has to be minimised,
is called the objective and the function to which
this objective is subjected is called a constraint.
In general, optimisation problems can have
multiple constraints. In view of a stochastic
problem this means that there are multiple
limit-states. An example is failure of a structure
due to different failure mechanisms. The multiple
limit-state situation introduces some new aspect to
the problem which were not analysed in detail
during this work and are therefore not discussed
any further in this paper. Information about this
topic can be found in references [4] and [7].

In the approximate model concept the objective
and constraints are approximated by Taylor
polynomials to form an approximate model. In
other words the original functions, which can be
complex and time consuming to evaluate, are
replaced by simple explicit polynomial relations.
Evaluation of these relations require nearly no
computing time at all and therefore can be easily
evaluated a great number of times. With these
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approximations an optimisation cycle, requiring
many function evaluations, is performed
resulting in an optimum, in our case a value for
the MPP. However, this optimum is based on an
approximation of the original objective and
constraints and thus will not be the exact
optimum of the original problem. Therefore, a
new approximate model is formed around the
new optimum found and a new optimisation
cycle is performed. Both steps, construction of
the approximate model and optimising it, are
called a maxi-cycle. Repeated maxi-cycles are
performed until one of the convergence criteria
has been met or a maximum number of cycles
have been exceeded.

This approach has a number of advantages. First
of all the optimisation algorithm used is not
critical any more (from a convergence point of
view), because the approximate model is a well
behaving optimisation problem. Secondly, it
reduces the total amount of function evaluations of
the original function, since the approximate model
is a reasonable approximation for a larger area
around the point in which the functions are
approximated.
In order to obtain the coefficients of the Taylor
polynomials a number of function evaluations of
the original functions are necessary. The
computing time now is spend on constructing the
approximate model requiring less function
evaluations than optimising the original problem
directly.

1.2.3 Approximate model

The objective (3) is a very simple explicit
function of the random variables requiring nearly
no computation time to evaluate it. For this
reason it is not approximated. The Taylor
approximation of the limit-state function has the
following form:

x-x=dx

HOT+dxHdx
2

1
+dx)xG(+)xG(=)xG(

a

T
aa ∇

(4)
where x is a vector of random variables, xa the
point around which the function is approximated.
∇ G is a vector containing the gradients of the
limit-state function to its variables, H is the
Hessian matrix containing second-order
derivatives of G and HOT are the Higher Order
Terms containing higher-order derivatives.

In order to obtain a second-order Taylor
approximation, the original limit-state function G
needs to be evaluated a number of times. First of
all G needs to be evaluated at the approximation
point xa. Secondly, to determine the gradients of G
a number of evaluations are needed depending on
the method used and finally, the Hessian matrix
consisting of second-order derivatives of G need a
considerable amount of function evaluations.
The gradients of G (first-order derivatives) are
determined with a finite difference scheme. Three
different schemes have been implemented:
backward, forward and central. The backward and
forward scheme require one evaluation for every
derivative plus the result of the already performed
function evaluation at the point function xa. The
central scheme requires an extra function
evaluation for every variable and is thus less
efficient than the other two schemes, without, in
general, resulting in a higher convergence rate.
The elements of the Hessian matrix consist of
second-order derivatives of G to its variables.
Therefore, evaluating this matrix requires a
considerable amount of function evaluations.
This is due to its many elements and due to the
evaluation of the second-order derivatives, which
requires more function evaluations than a
first-order derivative. One is therefore very
tempted to neglect this Hessian matrix and
proceed with only a first-order Taylor
approximation of the limit-state. However, the
convergence of the overall problem becomes
worse and sometimes the problem does not
converge at all. A solution to this problem is to
approximate this Hessian matrix, i.e. its
second-order derivative, by using the values of
the gradients and variables at the point xa of the
current and previous point (previous maxi-cycle).
The second-order Taylor approximation, called
Newton method, is then called a quasi-Newton
method or a variable metric method. The
approximate Hessian matrix is updated every
maxi-cycle at the new optimal point xa. Many of
such update formulas are available, but the most
popular is the so-called Broydon-Fletcher-
Goldfarb-Shanno (BFGS) method [12].

1.2.4 Optimisation of the
approximate model

As explained in section 1.2.2 a maxi-cycle
consists of construction of the approximate model
followed by an optimisation of this approximate
model. In the previous section it was explained
how the approximate model is constructed. In this
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section the topic of interest is the optimisation of
this model.
There are many optimisation algorithms available
to solve this problem, see for example reference
[12]. As mentioned before, one of the advantages
of the approximate model concept was the
resulting relatively simple and easy to solve
optimisation problem. The choice of optimisation
algorithm is therefore not very critical. Instead of
implementing an algorithm, it was chosen to use
an existing optimisation code called DOT [13].
The program is based on the modified feasible
directions algorithm. It’s outside the scope of this
paper to extensively explain the working of DOT.
For details the interested reader is referred to the
appendix E of [13].
Roughly speaking, the DOT algorithm is based on
finding a feasible (no constraints are violated)
search direction at the current point in the domain,
in which the algorithm tries to search for a better
optimum. Once a better optimum is found the
process of determining a new search direction and
finding an even better optimum is repeated at this
new point.
In order to determine a feasible search direction at
the current point X (vector in multi-dimensional
case) DOT needs the gradients of the objective
and constraints at the current point. A direction is
called feasible when no constraints are violated in
the direct neighbourhood of the current point.
Since we are optimising the approximate model,
the gradients required are the gradients of the
approximated model. In our case this implies the
gradients of the objective, which are exact since
the objective has not been approximated, and the
gradients of the approximated limit-state function.
The gradients of the objective can be determined
by:

xx

x=
x

obj
T

i

i ⋅∂
∂

The gradients of the approximate limit-state (4)
can be determined by:

xdH+)xG(=)xG( a∇∇

After a feasible search direction has been obtained
a line search is performed in that direction to reach
a better optimum. During this line search DOT
will ask for function values (in the approximate
space) at specific points. This process of finding a
feasible search direction and performing a line
search is repeated until no further improvement of
the optimum can be found or some convergence
criteria have been met.

1.2.5 Special features

In order to improve the convergence of the overall
process the following special features have been
applied.
1) The random variables are scaled to ensure that

their values lie in the range -1 ≤ Xi ≤ 1
2) The limit-state function is scaled such that

G(x) ≤ 1
3) DOT is unable to optimise a highly infeasible

problem, when a constraint is violated, i.e.
where the limit-state has a positive value. The
more the point lies away from the limit-state in
the domain where it is positive, the more
infeasible the problem becomes.

This situation can be overcome by
reformulating the problem into an
unconstraint optimisation problem with an
objective defined in terms of the constraints:

)eln(
�

1
=)xobj( )x(G�

nconst

=1i

i∑

with ρ being a large constant and nconst the
number of constraints.
The derivatives of this new objective yield:







∂

∂
∂
∂

∑
∑ x

(x)G
e

e

1
=

x

obj

i

j(x)G�
nconst

1=j(x)G�

nconst

1=j

i

j

j

Both the objective and its derivatives depend
only on known values and thus require no new
function evaluations. For the cases throughout
this paper only one limit-state is present and
the above expressions simplify to the original
constraint value and its derivative.
With this new problem an optimisation is
performed which results in a point in the
feasible domain, which is used as the next
point in the original optimisation problem.

4) As starting point of the optimisation process
the origin of the optimisation domain is chosen
for the following two reasons. Firstly, the
objective is a function with one global
minimum located at the origin. Because it is
unknown on forehand where the limit-state is
located, it is better to choose the starting point
at this minimum. Otherwise, a less favourable
point on the wrong side can be selected,
decreasing the convergence rate. Secondly, for
the same reason the chance on selecting an
initial point in the feasible domain is very
small. The initial problem therefore is nearly
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always infeasible when a starting point is
selected randomly. For such problems special
measures have to be taken (see point 3), which
is not the case when the point is located at the
origin, because at this point the value of the
objective and its derivatives are zero and
therefore do not take part in the first
maxi-cycle, i.e. for a single limit-state problem
a similar situation is achieved as described
under point 3.

5) As explained in section 1.2.2, the optimum
found with the approximate model after a
maxi-cycle is not the exact optimum and a
number of maxi-cycles are necessary to locate
the real optimum. However, due to the fact that
the Hessian is approximated (see section 1.2.3)
the error in the location of the optimum after
the first few maxi-cycles can be large. To
prevent in these cases an oscillating solution
process it is more efficient to restrict the
optimisation domain around the current point.
This is done with so-called move-limits.

6) The final optimum found will not be located
exactly on the limit-state. The optimisation
process will try to prevent the situation where
a point is exactly located on a constraint, in
order to prevent a cross over of the point in the
next cycle leading to an infeasible situation.
Therefore, the optimum found is not the exact
minimum distance (MPP) and the limit-state
value not exactly zero. The MPP can be
corrected for this non-zero limit-state value
using (4), as follows. Knowing that G(xβ) = 0
and furthermore assuming that:
- The term with the Hessian can be

neglected. This means that with a linear
approximation of the limit-state function
around the approximated optimum xa the
exact optimum xβ can be described
sufficiently accurate. This condition is
fulfilled because both points lie very close
to one another. This condition yields with
(4):

)x-x()xG(+)xG(=0 �aaa ∇
- xa points in the correct direction, i.e. the

vector is normal to the limit-state but only
the length of the vector not equals the exact
beta value. This condition is normally also
fulfilled by the optimisation process. This
condition yields:

x�=x-x a�a

where α is the correction factor searched.
Combining both equations, of which all the
values are already known, finally result in:

x)xG(

)xG(
-=�

aa

a

⋅∇

and finally with this the corrected β becomes:
�+x=� a

1.3 Non-normal to standard
normal variables transformation

In section 1.1 the three conditions to which the
stochastic problem is restricted, in order to use the
solution procedure described in this chapter, were
described. Already mentioned is that all three
restrictions can be overcome in an approximate
sense such that the method can be successfully
applied to a much broader class of problems. In
this section a method to deal with the first
restriction of section 1.1, i.e. the random variables
must be standard normally distributed, is
presented. A first approach was suggested by
Ditlevsen [5] and later on extended by Chen and
Lind [2].
Here, the exact transformation is applied. Let X
have an arbitrary cumulative distribution function
(CDF) F(x), which is the integral of the PDF f(x).

F(x)p =
The probability values of X lie in the range 0 ≤ p
≤ 1. A certain probability value can be represented
by any type of distribution function, although at
another location referred to as Z. In our case we
select a standard normal distribution. The variable
X hereby is transformed from the X-space of the
original distribution function to the standard
normal space Z. Mathematically formulated as:

����=F(x)

where F(x) represents the original cumulative
distribution function of X and Φ(z) the standard
normal distribution function.
In other words, knowing a value for X one can
find a value for Z in the standard normal space
by:

( )( )xF�z 1−=
where Φ-1() is the inverse of Φ(), or vice versa.
In this way any non-normally distributed variable
can be transformed to the standard normal space
or vice versa, although the transformation is non-
linear.
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1.4Dependent to independent
variables transformation

A method to deal with the second restriction of
section 1.1, i.e. the random variables have to be
independent of each other, is given in [14].
In equation (1) the basic stochastic problem was
defined and the JPDF was introduced. Rosenblatt
[10] has introduced a transformation by which the
non-normal dependent random variables are
transformed to independent standard normal
variables. With this transformation the first two
restrictions would have been resolved at once.
However, this transformation requires that the
JPDF is known, which is hardly ever the case for
any real life problem. The Rosenblatt
transformation is therefore more an academic then
a practical solution. There exist a more practical,
although approximate, solution, the so-called
Nataf model. Wu [14] has suggested an approach
for solving this Nataf model.

2 SECOND-ORDER RELIABILITY
METHOD (SORM)

2.1 Second-order probability
formula's

In the previous chapter the First-Order Reliability
Method (FORM) has been explained in detail and
it was shown how the first two requirements of
section 1.1 could be fulfilled in a general sense.
This chapter is concerned with the third
requirement and how, in general, FORM can be
extended in order to obtain a higher accuracy. In
section 1.1 it has been explained that the third
requirement can be viewed at as a linear
approximation of the limit-state: G(x)=0 and that
this approximation introduces a considerable error
in cases where the limit-state is far from linear. A
higher-order approximation of the limit-state will
give a considerable better accuracy in these cases,
an example will be shown in chapter 3. In general,
one can imagine that the limit-state surface is non-
linear.
Equation (4) is no longer valid for a second-order
limit-state. Breitung [1] was the first who came up
with an approximate solution for this case, which
is a correction on the FORM solution (2):

)�+(1

1
�����=0)P(G=p

i

1-n

=1i κκκκ
∏≤

where β again is the MPP and κi are the main
curvatures of the limit-state surface at β, taken
positive when convex. This solution becomes
exact as β→∞.
More accurate formulas have been developed by
Tvedt [11]. These are in order of increasing
accuracy:
• Tvedt's three-term formula (TT)
• Tvedt's single-integral formula (SI):
• Tvedt's double-integral formula (DI):
This last integral is exact when all curvatures are
positive.

2.2Determination of curvatures

The formulas introduced in the previous section
require the determination of the main curvatures
of the limit-state surface at the MPP. The main
curvatures are based on the eigenvalues of H.
In section 1.2.3, explaining the approximate
model, it was shown that calculation of the
Hessian matrix is very expensive. Therefore,
several methods have been proposed to
approximate the Hessian.
The most common method to calculate the
second-order derivatives at the MPP is a finite
difference scheme.
Another method, introduced by Der Kiureghian
[3], the curvatures in the different directions are
determined by fitting a paraboloid through a
number of selected points on the limit-state
surface at some distance from the MPP. This
method has a number of advantages over finite
difference methods [3] and is used here.

3 APPLICATIONS

3.1 Introduction

The second-order method, and as a result of that
also the first-order method, explained in the
previous chapters have been implemented in a
computer program called RAP (Reliability
Analysis Program).
In this chapter two numerical examples are
analysed to demonstrate the:
1) Correctness of the implemented computer

code
2) Accuracy of the method
3) Performance of the computer code (number

of function evaluations)
4) Capabilities of the software
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The first example concerns the stochastic static
deflection of a beam due to variability in the
elasticity modulus and applied force. In the second
example the influence on the dynamical behaviour
of a square simply supported plate due to the
variability in the plate thickness and its elasticity
modulus is examined.
In general, the number of function evaluations
required by RAP to obtain a FORM solution is
given by:

1+1)+N(N=N varmaxcycleFORM

where Nvar is the number of random variables in
the problem and Nmaxcycle is the number of
maxi-cycles to reach an optimum MPP, usually 3
to 4.
The extra function evaluations required for
determination of the curvatures to obtain a SORM
solution is given by:

N1)-N(2=N secantvarcurvs

where Nsecant stands for the number of iterations
required by the secant algorithm to reach a
converged solution, usually 3 to 4.

3.2 Stochastic static problem

In this section a simple static problem is discussed
to show the application of the stochastic method.
The problem, figure 1, consists of a prismatic
beam of length L with moment of inertia I,
clamped on one side and simply supported on the
other side and loaded by a point force F at point C
on a distance a from the clamping. Our interest
lies in the maximum deflection of the beam at the
loading point δδδδc and its statistical behaviour due to
the random behaviour of the force F and elasticity
modulus E of the beam.

Figure 1. Definition static beam problem.

The deflection of the beam can analytically be
determined by means of:
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The following parameter values were used:

L = 3 m
a = 2 m
b = 1 m
I = 1.7 10-6 m4

E = Log-normally distributed:
µ = 7 1010 N/m2 σ = 7 109 N/m2

F = Extreme value distribution type I max:
x0 = 995 N α = 78 N

Suppose the following question was raised: what
is the probability that the deflection at point-C is
larger than 3 mm?
This question can be answered by RAP by
applying the following limit-state function:

F)(E,�-3=F)G(E, c

Figure 2 depicts this limit-state G=0 for this case.
The MPP, the point having the closest distance to
the origin in standard normal space U, is also
shown and yields:

β = 2.4357

With this β-value and equation (2) the FORM
probability value becomes:

pFORM = 7.43 10-3

From figure 2 it is clear that the limit-state is not
linear (straight line). The SORM result (based on
the Tvedt's DI formula [11]) correcting for this,
yields:

pSORM = 8.82 10-3

which is a higher value than predicted by FORM,
consistent with the shape of the limit-state.

Figure 2. Two-dimensional limit-state G(E,F)=0
for beam problem.
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Also a Monte-Carlo analysis, also included in
RAP, was performed with 106 simulations
resulting in a probability value of:

pMC = 8.85 10-3

with probability bounds:

8.63 10-3 < pMC < 9.07 10-3

This confirms the correct implementation of the
methods.
In order to obtain the FORM solution, 13 function
evaluations were required including one to obtain
the value of the limit-state at the final MPP.
Another 8 function evaluations were required to
obtain the SORM solution, leading to a total of 21,
in contrast to the large amount (106) required to
obtain a reliable Monte-Carlo solution!

3.3Stochastic dynamic problem

The second example problem concerns the
dynamical behaviour of a square simply supported
plate of length a, width b and thickness t. The
material is characterised by its elasticity modulus
E, density ρρρρ and Poison's constant νννν. Assumed
here is that both the thickness and elasticity
modulus are normally distributed.
The following parameter values were used:

a = 2 m
b = 1 m
t = Normally distributed:

µ = 1 10-3 m σ = 1 10-4 m
E = Normally distributed:

µ = 7 1010 N/m2 σ = 7 109 N/m2

ρ = 2800 kg/m3

ν = 0.3
Suppose the plate is part of a system which is
excitated by an external source at a frequency of
1.5 Hz. If an eigenfrequency of the plate would lie
close to the excitation frequency this would cause
considerable vibrations of the plate, which has to
be avoided.
A deterministic analysis of the plate, with mean
values for t and E, would yield a first
eigenfrequency of 2.97 Hz sufficiently away from
the excitation frequency, so no problems should
be expected. However, in reality for example t and
E are stochastic, having a normal distribution with
a coefficient of variation around the 10%.
If t and E are normally distributed variables: what
would be the chance that the eigenfrequency of the
system would lie at or in the close neighbourhood
of the excitation frequency?

This can be determined by constructing part of the
CDF around the 1.5 Hz. Let’s start by determining
the probability that the first frequency of the plate
is less than 1.6 Hz, represented by the limit-state:

1.6-E)(t,f=E)G(t, 1

The eigenfrequency is determined by means of a
finite element analysis using 10*10 quadratic shell
elements.
Figure 3 depicts the limit-state G=0. The MPP
yields:

β = 4.4235

With this the FORM probability value (2),
requiring 9 function evaluations, becomes:

pFORM = 4.86 10-6

From figure 2 it is clear that the limit-state surface
is not linear. The SORM result, based on the
Tvedt's DI formula requiring an extra 8 function
evaluations, correcting for this, yields:

pSORM = 5.60 10-6

This is a very small probability, which indicates
that there is little risk that the frequency of the
plate will lie in the neighbourhood of the
excitation frequency.

Figure 3. Two-dimensional limit-state (G(t,E)=0)

No Monte-Carlo results were determined, because
the low probability would require at least 108

simulations, in contrast with the 13 function
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evaluations required by the current stochastic
method.

Figure 4 shows the left tail of the CDF constructed
by computing the probability value for a number
of other frequency values.

Figure 4. Calculated left-tail of CDF (SORM)

CONCLUSIONS

In this paper a very efficient stochastic method
for probabilistic analysis has been described. The
method has been implemented in an in-house
computer code RAP.
The accuracy, correct implementation,
performance and capabilities of the method are
examined by analysing various example problems
of which two are presented here, some more
academic and some more realistic of nature. From
these analyses, it can be concluded that:
• the various aspects of the method are

implemented correctly,
• the method has a high accuracy for all the

analysed problems,
• the performance of the method is very good,

requiring only very few function
evaluations,

• the method can be applied to a large variety
of problems. No restrictions have been
found so far.
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