12,350 research outputs found

    Relativistic Nucleus-Nucleus Collisions: Zone of Reactions and Space-Time Structure of a Fireball

    Full text link
    A zone of reactions is determined and then exploited as a tool in studying the space-time structure of an interacting system formed in a collision of relativistic nuclei. The time dependence of the reaction rates integrated over spatial coordinates is also considered. Evaluations are made with the help of the microscopic transport model UrQMD. The relation of the boundaries of different zones of reactions and the hypersurfaces of sharp chemical and kinetic freeze-outs is discussed.Comment: 6 pages, 5 figure

    Anisotropic Flow and Viscous Hydrodynamics

    Full text link
    We report part of our recent work on viscous hydrodynamics with consistent phase space distribution f(x,\p) for freeze out. We develop the gradient expansion formalism based on kinetic theory, and with the constraints from the comparison between hydrodynamics and kinetic theory, viscous corrections to f(x,\p) can be consistently determined order by order. Then with the obtained f(x,\p), second order viscous hydrodynamical calculations are carried out for elliptic flow v2v_2.Comment: 8 pages, 2 figures. Proceedings for the 28th Winter Workshop on Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 - 14 Apr 201

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure

    Dissipative effects from transport and viscous hydrodynamics

    Full text link
    We compare 2->2 covariant transport theory and causal Israel-Stewart hydrodynamics in 2+1D longitudinally boost invariant geometry with RHIC-like initial conditions and a conformal e = 3p equation of state. The pressure evolution in the center of the collision zone and the final differential elliptic flow v2(pT) from the two theories agree remarkably well for a small shear viscosity to entropy density ratio eta/s ~ 1/(4 pi), and also for a large cross section sigma ~ 50 mb. A key to this agreement is keeping ALL terms in the Israel-Stewart equations of motion. Our results indicate promising prospects for the applicability of Israel-Stewart dissipative hydrodynamics at RHIC, provided the shear viscosity of hot and dense quark-gluon matter is indeed very small for the relevant temperatures T ~ 200-500 MeV.Comment: Presentation at Quark Matter 2008. 4 pages, 3 figure

    Momentum of an electromagnetic wave in dielectric media

    Get PDF
    Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy--momentum tensor is complete on its own. When the appropriate accompanying energy--momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0 from Eq.(44

    Scattering Theory of Charge-Current Induced Magnetization Dynamics

    Full text link
    In ferromagnets, charge currents can excite magnons via the spin-orbit coupling. We develop a novel and general scattering theory of charge current induced macrospin magnetization torques in normal metal|ferromagnet|normal metal layers. We apply the formalism to a dirty GaAs|(Ga,Mn)As|GaAs system. By computing the charge current induced magnetization torques and solving the Landau-Lifshitz-Gilbert equation, we find magnetization switching for current densities as low as 5×106 5\times 10^{6}~A/cm2^2. Our results are in agreement with a recent experimental observation of charge-current induced magnetization switching in (Ga,Mn)As.Comment: Final version accepted by EP

    Transport in a highly asymmetric binary fluid mixture

    Get PDF
    We present molecular dynamics calculations of the thermal conductivity and viscosities of a model colloidal suspension with colloidal particles roughly one order of magnitude larger than the suspending liquid molecules. The results are compared with estimates based on the Enskog transport theory and effective medium theories (EMT) for thermal and viscous transport. We find, in particular, that EMT remains well applicable for predicting both the shear viscosity and thermal conductivity of such suspensions when the colloidal particles have a ``typical'' mass, i.e. much larger than the liquid molecules. Very light colloidal particles on the other hand yield higher thermal conductivities, in disagreement with EMT. We also discuss the consequences of these results to some proposed mechanisms for thermal conduction in nanocolloidal suspensions.Comment: 13 pages, 6 figures, to appear in Physical Review E (2007

    Transport of heat and mass in a two-phase mixture. From a continuous to a discontinuous description

    Full text link
    We present a theory which describes the transport properties of the interfacial region with respect to heat and mass transfer. Postulating the local Gibbs relation for a continuous description inside the interfacial region, we derive the description of the Gibbs surface in terms of excess densities and fluxes along the surface. We introduce overall interfacial resistances and conductances as the coefficients in the force-flux relations for the Gibbs surface. We derive relations between the local resistivities for the continuous description inside the interfacial region and the overall resistances of the surface for transport between the two phases for a mixture. It is shown that interfacial resistances depend among other things on the enthalpy profile across the interface. Since this variation is substantial the coupling between heat and mass flow across the surface are also substantial. In particular, the surface puts up much more resistance to the heat and mass transfer then the homogeneous phases over a distance comparable to the thickness of the surface. This is the case not only for the pure heat conduction and diffusion but also for the cross effects like thermal diffusion. For the excess fluxes along the surface and the corresponding thermodynamic forces we derive expressions for excess conductances as integrals over the local conductivities along the surface. We also show that the curvature of the surface affects only the overall resistances for transport across the surface and not the excess conductivities along the surface.Comment: 25 pages, 2 figure

    Relativistic viscoelastic fluid mechanics

    Get PDF
    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.Comment: 52pages, 11figures; v2: minor corrections; v3: minor corrections, to appear in Physical Review E; v4: minor change

    Onsager approach to 1D solidification problem and its relation to phase field description

    Get PDF
    We give a general phenomenological description of the steady state 1D front propagation problem in two cases: the solidification of a pure material and the isothermal solidification of two component dilute alloys. The solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The isothermal solidification of two component alloys is controlled by the diffusion in the bulk and the interface kinetics. We find that the condition of positive-definiteness of the symmetric Onsager matrix of interface kinetic coefficients still allows an arbitrary sign of the slope of the velocity-concentration line near the solidus in the alloy problem or of the velocity-temperature line in the case of solidification of a pure material. This result offers a very simple and elegant way to describe the interesting phenomenon of a possible non-single-value behavior of velocity versus concentration which has previously been discussed by different approaches. We also discuss the relation of this Onsager approach to the thin interface limit of the phase field description.Comment: 5 pages, 1 figure, submitted to Physical Review
    corecore