18,998 research outputs found
Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka
Although single-domain particles of biogenic magnetite have been found in different species of pelagic fishes, nothing is known about when it is synthesized, or about whether the time during life when it is produced is correlated with the
development of responses to magnetic field stimuli. We have investigated production of biogenic magnetite suitable for use in magnetoreception in different life stages of the sockeye salmon, Oncorhynchus nerka (Walbaum). Sockeye
salmon were chosen because responses in orientation arenas to magnetic field stimuli have been demonstrated in both fry and smolt stages of this species.
We found significant quantities of single-domain magnetite in connective tissue from the ethmoid region of the skull of adult (4-year-old) sockeye salmon. The ontogenetic study revealed an orderly increase in the amount of magnetic material in the same region of the skull but not in other tissues of sockeye salmon fry, yearlings and smolts. The physical properties of this material closely matched
those of magnetite particles extracted from the ethmoid tissue of the adult fish. We suggest that single-domain magnetite particles suitable for use in magnetoreception
are produced throughout life in the ethmoid region of the skull in sockeye salmon. Based on theoretical calculations, we conclude that there are enough particles present in the skulls of the fry to mediate their responses to magnetic field direction. By the smolt stage, the amount of magnetite present in the front of the skull is sufficient to provide the fish with a magnetoreceptor capable of detecting small changes in the intensity of the geomagnetic field.
Other tissues of the salmon, such as the eye and skin, often contained ferromagnetic material, although the magnetizations of these tissues were usually more variable than in the ethmoid tissue. These deposits of unidentified magnetic material, some of which may be magnetite, appear almost exclusively in adults and so would not be useful in magnetoreception by young fish. We suggest that tissue from within the ethmoid region of the skull in pelagic fishes is the only site yet identified where magnetite suitable for use in magnetoreception is concentrated
Half-metallic ferromagnets: From band structure to many-body effects
A review of new developments in theoretical and experimental electronic
structure investigations of half-metallic ferromagnets (HMF) is presented.
Being semiconductors for one spin projection and metals for another ones, these
substances are promising magnetic materials for applications in spintronics
(i.e., spin-dependent electronics). Classification of HMF by the peculiarities
of their electronic structure and chemical bonding is discussed. Effects of
electron-magnon interaction in HMF and their manifestations in magnetic,
spectral, thermodynamic, and transport properties are considered. Especial
attention is paid to appearance of non-quasiparticle states in the energy gap,
which provide an instructive example of essentially many-body features in the
electronic structure. State-of-art electronic calculations for correlated
-systems is discussed, and results for specific HMF (Heusler alloys,
zinc-blende structure compounds, CrO FeO) are reviewed.Comment: to be published in Reviews of Modern Physics, vol 80, issue
A first--order irreversible thermodynamic approach to a simple energy converter
Several authors have shown that dissipative thermal cycle models based on
Finite-Time Thermodynamics exhibit loop-shaped curves of power output versus
efficiency, such as it occurs with actual dissipative thermal engines. Within
the context of First-Order Irreversible Thermodynamics (FOIT), in this work we
show that for an energy converter consisting of two coupled fluxes it is also
possible to find loop-shaped curves of both power output and the so-called
ecological function against efficiency. In a previous work Stucki [J.W. Stucki,
Eur. J. Biochem. vol. 109, 269 (1980)] used a FOIT-approach to describe the
modes of thermodynamic performance of oxidative phosphorylation involved in
ATP-synthesis within mithochondrias. In that work the author did not use the
mentioned loop-shaped curves and he proposed that oxidative phosphorylation
operates in a steady state simultaneously at minimum entropy production and
maximum efficiency, by means of a conductance matching condition between
extreme states of zero and infinite conductances respectively. In the present
work we show that all Stucki's results about the oxidative phosphorylation
energetics can be obtained without the so-called conductance matching
condition. On the other hand, we also show that the minimum entropy production
state implies both null power output and efficiency and therefore this state is
not fulfilled by the oxidative phosphorylation performance. Our results suggest
that actual efficiency values of oxidative phosphorylation performance are
better described by a mode of operation consisting in the simultaneous
maximization of the so-called ecological function and the efficiency.Comment: 20 pages, 7 figures, submitted to Phys. Rev.
Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices
Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 10 6-10 8. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 10 7 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RM
Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time
To calculate the baryon asymmetry in the baryogenesis via leptogenesis
scenario one usually uses Boltzmann equations with transition amplitudes
computed in vacuum. However, the hot and dense medium and, potentially, the
expansion of the universe can affect the collision terms and hence the
generated asymmetry. In this paper we derive the Boltzmann equation in the
curved space-time from (first-principle) Kadanoff-Baym equations. As one
expects from general considerations, the derived equations are covariant
generalizations of the corresponding equations in Minkowski space-time. We find
that, after the necessary approximations have been performed, only the
left-hand side of the Boltzmann equation depends on the space-time metric. The
amplitudes in the collision term on the right--hand side are independent of the
metric, which justifies earlier calculations where this has been assumed
implicitly. At tree level, the matrix elements coincide with those computed in
vacuum. However, the loop contributions involve additional integrals over the
the distribution function.Comment: 14 pages, 5 figures, extended discussion of the constraint equations
and the solution for the spectral functio
Vector/tensor duality in the five dimensional supersymmetric Green-Schwarz mechanism
The five dimensional version of the Green-Schwarz mechanism can be invoked to
cancel U(1) anomalies on the boundaries of brane world models. In five
dimensions there are two dual descriptions that employ either a two-form tensor
field or a vector field. We present the supersymmetric extensions of these dual
theories using four dimensional N=1 superspace. For the supersymmetrization of
the five dimensional Chern-Simons three form this requires the introduction of
a new chiral Chern-Simons multiplet. We derive the supersymmetric vector/tensor
duality relations and show that not only is the usual one/two-form duality
modified, but that there is also an interesting duality relation between the
scalar components. Furthermore, the vector formulation always contains singular
boundary mass terms which are absent in the tensor formulation. This apparent
inconsistency is resolved by showing that in either formulation the four
dimensional anomalous U(1) mass spectrum is identical, with the lowest lying
Kaluza-Klein mode generically obtaining a finite nonzero mass.Comment: 1+35 pages, LaTeX, 1 figure, references added, typos correcte
Magnetic Soret effect: Application of the ferrofluid dynamics theory
The ferrofluid dynamics theory is applied to thermodiffusive problems in
magnetic fluids in the presence of magnetic fields. The analytical form for the
magnetic part of the chemical potential and the most general expression of the
mass flux are given. By employing these results to experiments, global Soret
coefficients in agreement with measurements are determined. Also an estimate
for a hitherto unknown transport coefficient is made.Comment: 7 pages, 2 figure
Slow, Steady-State Transport with "Loading" and Bulk Reactions: the Mixed Ionic Conductor LaCuO
We consider slow, steady transport for the normal state of the superconductor
LaCuO in a one-dimensional geometry, with surface fluxes
sufficiently general to permit oxygen to be driven into the sample (``loaded'')
either by electrochemical means or by high oxygen partial pressure. We include
the bulk reaction OO, where neutral atoms () go into ions
() and holes (). For slow, steady transport, the transport equations
simplify because the bulk reaction rate density and the bulk loading rates
then are uniform in space and time. All three fluxes must be
specified at each surface, which for a uniform current density corresponds
to five independent fluxes. These fluxes generate two types of static modes at
each surface and a bulk response with a voltage profile that varies
quadratically in space, characterized by and the total oxygen flux
(neutral plus ion) at each surface. One type of surface mode is associated with
electrical screening; the other type is associated both with diffusion and
drift, and with chemical reaction (the {\it diffusion-reaction mode}). The
diffusion-reaction mode is accompanied by changes in the chemical potentials
, and by reactions and fluxes, but it neither carries current (J=0) nor
loads the system chemically (). Generation of the diffusion-reaction
mode may explain the phenomenon of ``turbulence in the voltage'' often observed
near the electrodes of other mixed ionic electronic conductors (MIECs).Comment: 11 pages, 1 figur
Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates
We present a theoretical analysis of the selective darkening method for
implementing quantum controlled-NOT (CNOT) gates. This method, which we
recently proposed and demonstrated, consists of driving two
transversely-coupled quantum bits (qubits) with a driving field that is
resonant with one of the two qubits. For specific relative amplitudes and
phases of the driving field felt by the two qubits, one of the two transitions
in the degenerate pair is darkened, or in other words, becomes forbidden by
effective selection rules. At these driving conditions, the evolution of the
two-qubit state realizes a CNOT gate. The gate speed is found to be limited
only by the coupling energy J, which is the fundamental speed limit for any
entangling gate. Numerical simulations show that at gate speeds corresponding
to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and
increases further for lower gate speeds. In addition, the effect of
higher-lying energy levels and weak anharmonicity is studied, as well as the
scalability of the method to systems of multiple qubits. We conclude that in
all these respects this method is competitive with existing schemes for
creating entanglement, with the added advantages of being applicable for qubits
operating at fixed frequencies (either by design or for exploitation of
coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure
H-theorem for classical matter around a black hole
We propose a classical solution for the kinetic description of matter falling
into a black hole, which permits to evaluate both the kinetic entropy and the
entropy production rate of classical infalling matter at the event horizon. The
formulation is based on a relativistic kinetic description for classical
particles in the presence of an event horizon. An H-theorem is established
which holds for arbitrary models of black holes and is valid also in the
presence of contracting event horizons
- …
