5 research outputs found

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports

    Get PDF
    Background The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. However, processing this rich resource of data for clinical and research purposes, depends on labor-intensive and potentially error-prone manual review. The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases. Material and methods Bone scintigraphy reports of patients undergoing surgery for bone metastases were labeled each by three independent reviewers using a binary classification (single metastasis versus two or more metastases) to establish a ground truth. A stratified 80:20 split was used to develop and test an extreme-gradient boosting supervised machine learning NLP algorithm. Results A total of 704 free-text bone scintigraphy reports from 704 patients were included in this study and 617 (88%) had multiple bone metastases. In the independent test set (n = 141) not used for model development, the NLP algorithm achieved an 0.97 AUC-ROC (95% confidence interval [CI], 0.92-0.99) for classification of multiple bone metastases and an 0.99 AUC-PRC (95% CI, 0.99-0.99). At a threshold of 0.90, NLP algorithm correctly identified multiple bone metastases in 117 of the 124 who had multiple bone metastases in the testing cohort (sensitivity 0.94) and yielded 3 false positives (specificity 0.82). At the same threshold, the NLP algorithm had a positive predictive value of 0.97 and F1-score of 0.96. Conclusions NLP has the potential to automate clinical data extraction from free text radiology notes in orthopedics, thereby optimizing the speed, accuracy, and consistency of clinical chart review. Pending external validation, the NLP algorithm developed in this study may be implemented as a means to aid researchers in tackling large amounts of data

    Carbon-fibre plates for traumatic and (impending) pathological fracture fixation: where do we stand? A systematic review

    Get PDF
    BackgroundCarbon-fibre (CF) plates are increasingly used for fracture fixation. This systematic review evaluated complications associated with CF plate fixation. It also compared outcomes of patients treated with CF plates versus metal plates, aiming to determine if CF plates offered comparable results. The study hypothesized that CF plates display similar complication rates and clinical outcomes as metal plates for fracture fixation.MethodsThe study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The following databases were searched from database inception until June 2023: PubMed, MEDLINE, Embase, Web of Science, Cochrane Library, Emcare, Academic Search Premier and Google Scholar. Studies reporting on clinical and radiological outcomes of patients treated with CF plates for traumatic fractures and (impending) pathological fractures were included. Study quality was assessed, and complications were documented as number and percentage per anatomic region.ResultsA total of 27 studies of moderate to very low quality of evidence were included. Of these, 22 studies (800 patients, median follow-up 12 months) focused on traumatic fractures, and 5 studies (102 patients, median follow-up 12 months) on (impending) pathological fractures. A total of 11 studies (497 patients, median follow-up 16 months) compared CF plates with metal plates. Regarding traumatic fractures, the following complications were mostly reported: soft tissue complications (52 out of 391; 13%) for the humerus, structural complications (6 out of 291; 2%) for the distal radius, nonunion and structural complication (1 out of 34; 3%) for the femur, and infection (4 out of 104; 4%) for the ankle. For (impending) pathological fractures, the most frequently reported complications were infections (2 out of 14; 14%) for the humerus and structural complication (6 out of 86; 7%) for the femur/tibia. Comparative studies reported mixed results, although the majority (7 out of 11; 64%) reported no significant differences in clinical or radiological outcomes between patients treated with CF or metal plates.ConclusionThis systematic review did not reveal a concerning number of complications related to CF plate fixation. Comparative studies showed no significant differences between CF plates and metal plates for traumatic fracture fixation. Therefore, CF plates appear to be a viable alternative to metal plates. However, high-quality randomized controlled trials (RCTs) with long-term follow-up are strongly recommended to provide additional evidence supporting the use of CF plates.Level of evidence: III, systematic review.Orthopaedics, Trauma Surgery and Rehabilitatio

    How Does the Skeletal Oncology Research Group Algorithm's Prediction of 5-year Survival in Patients with Chondrosarcoma Perform on International Validation?

    No full text
    BACKGROUND: The Skeletal Oncology Research Group (SORG) machine learning algorithm for predicting survival in patients with chondrosarcoma was developed using data from the Surveillance, Epidemiology, and End Results (SEER) registry. This algorithm was externally validated on a dataset of patients from the United States in an earlier study, where it demonstrated generally good performance but overestimated 5-year survival. In addition, this algorithm has not yet been validated in patients outside the United States; doing so would be important because external validation is necessary as algorithm performance may be misleading when applied in different populations. QUESTIONS/PURPOSES: Does the SORG algorithm retain validity in patients who underwent surgery for primary chondrosarcoma outside the United States, specifically in Italy? METHODS: A total of 737 patients were treated for chondrosarcoma between January 2000 and October 2014 at the Italian tertiary care center which was used for international validation. We excluded patients whose first surgical procedure was performed elsewhere (n = 25), patients who underwent nonsurgical treatment (n = 27), patients with a chondrosarcoma of the soft tissue or skull (n = 60), and patients with peripheral, periosteal, or mesenchymal chondrosarcoma (n = 161). Thus, 464 patients were ultimately included in this external validation study, as the earlier performed SEER study was used as the training set. Therefore, this study-unlike most of this type-does not have a training and validation set. Although the earlier study overestimated 5-year survival, we did not modify the algorithm in this report, as this is the first international validation and the prior performance in the single-institution validation study from the United States may have been driven by a small sample or non-generalizable patterns related to its single-center setting. Variables needed for the SORG algorithm were manually collected from electronic medical records. These included sex, age, histologic subtype, tumor grade, tumor size, tumor extension, and tumor location. By inputting these variables into the algorithm, we calculated the predicted probabilities of survival for each patient. The performance of the SORG algorithm was assessed in this study through discrimination (the ability of a model to distinguish between a binary outcome), calibration (the agreement of observed and predicted outcomes), overall performance (the accuracy of predictions), and decision curve analysis (establishment on the ability of a model to make a decision better than without using the model). For discrimination, the c-statistic (commonly known as the area under the receiver operating characteristic curve for binary classification) was calculated; this ranged from 0.5 (no better than chance) to 1.0 (excellent discrimination). The agreement between predicted and observed outcomes was visualized with a calibration plot, and the calibration slope and intercept were calculated. Perfect calibration results in a slope of 1 and an intercept of 0. For overall performance, the Brier score and the null-model Brier score were calculated. The Brier score ranges from 0 (perfect prediction) to 1 (poorest prediction). Appropriate interpretation of the Brier score requires comparison with the null-model Brier score. The null-model Brier score is the score for an algorithm that predicts a probability equal to the population prevalence of the outcome for every patient. A decision curve analysis was performed to compare the potential net benefit of the algorithm versus other means of decision support, such as treating all or none of the patients. There were several differences between this study and the earlier SEER study, and such differences are important because they help us to determine the performance of the algorithm in a group different from the initial study population. In this study from Italy, 5-year survival was different from the earlier SEER study (71% [319 of 450 patients] versus 76% [1131 of 1487 patients]; p = 0.03). There were more patients with dedifferentiated chondrosarcoma than in the earlier SEER study (25% [118 of 464 patients] versus 8.5% [131 of 1544 patients]; p < 0.001). In addition, in this study patients were older, tumor size was larger, and there were higher proportions of high-grade tumors than the earlier SEER study (age: 56 years [interquartile range {IQR} 42 to 67] versus 52 years [IQR 40 to 64]; p = 0.007; tumor size: 80 mm [IQR 50 to 120] versus 70 mm [IQR 42 to 105]; p < 0.001; tumor grade: 22% [104 of 464 had Grade 1], 42% [196 of 464 had Grade 2], and 35% [164 of 464 had Grade 3] versus 41% [592 of 1456 had Grade 1], 40% [588 of 1456 had Grade 2], and 19% [276 of 1456 had Grade 3]; p 64 0.001). RESULTS: Validation of the SORG algorithm in a primarily Italian population achieved a c-statistic of 0.86 (95% confidence interval 0.82 to 0.89), suggesting good-to-excellent discrimination. The calibration plot showed good agreement between the predicted probability and observed survival in the probability thresholds of 0.8 to 1.0. With predicted survival probabilities lower than 0.8, however, the SORG algorithm underestimated the observed proportion of patients with 5-year survival, reflected in the overall calibration intercept of 0.82 (95% CI 0.67 to 0.98) and calibration slope of 0.68 (95% CI 0.42 to 0.95). The Brier score for 5-year survival was 0.15, compared with a null-model Brier of 0.21. The algorithm showed a favorable decision curve analysis in the validation cohort. CONCLUSIONS: The SORG algorithm to predict 5-year survival for patients with chondrosarcoma held good discriminative ability and overall performance on international external validation; however, it underestimated 5-year survival for patients with predicted probabilities from 0 to 0.8 because the calibration plot was not perfectly aligned for the observed outcomes, which resulted in a maximum underestimation of 20%. The differences may reflect the baseline differences noted between the two study populations. The overall performance of the algorithm supports the utility of the algorithm and validation presented here. The freely available digital application for the algorithm is available here: https://sorg-apps.shinyapps.io/extremitymetssurvival/. LEVEL OF EVIDENCE: Level III, prognostic study

    Complications of patients with bone tumors treated with carbon-fiber plates: an international multicenter study

    No full text
    Carbon-fiber (CF) plates are a promising alternative to metal plates. However, reported experience in orthopaedic oncology remains limited. The aim of this study was to identify complications of patients with bone tumors treated with CF plates. Between February 2015 and May 2021, 13 centers retrospectively registered patients with bone tumors that were reconstructed using CF plates. Complications were identified, and timing and etiology of complications were noted. Similar complications were tabulated and classified based on mechanical, non-mechanical and paediatric complications. Mechanical complications included: (1) aseptic loosening or graft-host non-union, and (2) structural complications. Non-mechanical complications included: (3) soft tissue complications, (4) infection and (5) tumor progression. Specific paediatric complications included (6) growth arrest resulting in longitudinal or angular deformity. Ninety-six patients were included with a median follow-up time of 35 months. In total, 22 (23%) patients had complications. Mechanical complications included: 1 (1%) aseptic loosening, 2 (2%) non-unions, and 7 (7%) structural complications. Non-mechanical complications included 1 (1%) soft tissue complication, 4 (4%) infections and 5 (5%) tumor progressions. Paediatric complications occurred in 2 (2%) patients. This study suggests CF plates are safe to use in demanding reconstructions after bone tumor resections, presenting a seemingly low complication profile.Orthopaedics, Trauma Surgery and Rehabilitatio

    Complications of patients with bone tumors treated with carbon-fiber plates: an international multicenter study

    No full text
    Carbon-fiber (CF) plates are a promising alternative to metal plates. However, reported experience in orthopaedic oncology remains limited. The aim of this study was to identify complications of patients with bone tumors treated with CF plates. Between February 2015 and May 2021, 13 centers retrospectively registered patients with bone tumors that were reconstructed using CF plates. Complications were identified, and timing and etiology of complications were noted. Similar complications were tabulated and classified based on mechanical, non-mechanical and paediatric complications. Mechanical complications included: (1) aseptic loosening or graft-host non-union, and (2) structural complications. Non-mechanical complications included: (3) soft tissue complications, (4) infection and (5) tumor progression. Specific paediatric complications included (6) growth arrest resulting in longitudinal or angular deformity. Ninety-six patients were included with a median follow-up time of 35 months. In total, 22 (23%) patients had complications. Mechanical complications included: 1 (1%) aseptic loosening, 2 (2%) non-unions, and 7 (7%) structural complications. Non-mechanical complications included 1 (1%) soft tissue complication, 4 (4%) infections and 5 (5%) tumor progressions. Paediatric complications occurred in 2 (2%) patients. This study suggests CF plates are safe to use in demanding reconstructions after bone tumor resections, presenting a seemingly low complication profile
    corecore