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ABSTRACT
Background: The widespread use of electronic patient-generated health data has led to unprece-
dented opportunities for automated extraction of clinical features from free-text medical notes.
However, processing this rich resource of data for clinical and research purposes, depends on labor-
intensive and potentially error-prone manual review. The aim of this study was to develop a natural
language processing (NLP) algorithm for binary classification (single metastasis versus two or more
metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.
Material and methods: Bone scintigraphy reports of patients undergoing surgery for bone metastases
were labeled each by three independent reviewers using a binary classification (single metastasis ver-
sus two or more metastases) to establish a ground truth. A stratified 80:20 split was used to develop
and test an extreme-gradient boosting supervised machine learning NLP algorithm.
Results: A total of 704 free-text bone scintigraphy reports from 704 patients were included in this
study and 617 (88%) had multiple bone metastases. In the independent test set (n¼ 141) not used for
model development, the NLP algorithm achieved an 0.97 AUC-ROC (95% confidence interval [CI],
0.92–0.99) for classification of multiple bone metastases and an 0.99 AUC-PRC (95% CI, 0.99–0.99). At a
threshold of 0.90, NLP algorithm correctly identified multiple bone metastases in 117 of the 124 who
had multiple bone metastases in the testing cohort (sensitivity 0.94) and yielded 3 false positives (spe-
cificity 0.82). At the same threshold, the NLP algorithm had a positive predictive value of 0.97 and F1-
score of 0.96.
Conclusions: NLP has the potential to automate clinical data extraction from free text radiology notes
in orthopedics, thereby optimizing the speed, accuracy, and consistency of clinical chart review.
Pending external validation, the NLP algorithm developed in this study may be implemented as a
means to aid researchers in tackling large amounts of data.
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Introduction

In medicine, electronic health record (EHR) data is increasing
exponentially over time [1]. The majority of this data is
unstructured text in clinical reports, impeding its utilization
in clinical practice and research setting. Manually extracting
clinical characteristics of interest from these medical docu-
ments remain inefficient and prone to error; therefore
neglecting potential valuable information [2,3]. One of these
characteristics is the number of bone metastases as the
quantity of bone metastases is associated with adverse out-
comes such as postoperative complications and survival in
oncologic populations [4–6]. No diagnosis code or auto-
mated extraction tool is available to bypass error prone and
time-consuming manual chart review.

Artificial intelligence (AI) has emerged as a powerful
method to transform medical care [7–9]. Although many AI-
based methods have emerged in orthopedic healthcare with
strong performance, analysis of free-text clinical notes

remains challenging [5]. One approach to analyze the free-
text of patients’ medical records is the use of natural lan-
guage processing (NLP), a subfield of AI that focuses on ena-
bling computers to process human language [10]. However,
to our knowledge, there are no NLP algorithms available for
extracting meaningful clinical features from free-text radi-
ology reports in the field of orthopedic oncology.

The aim of this study was to develop an NLP algorithm
for binary classification (single metastasis versus two or more
metastases) in bone scintigraphy reports of patients under-
going surgery for bone metastases.

Material and methods

Guidelines

The TRIPOD guidelines were followed for the development
of the algorithm reported in this study [11].
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Study population

Institutional review board approval was granted for retro-
spective review of EHRs. The inclusion criteria for this study
were: (1) aged 18 years or older; (2) surgical treatment for a
bone metastatic lesion; (3) date of procedure between 1
January 2002 and 1 January 2017; (4) index surgery at one of
our two affiliated tertiary care hospitals; and (4) free-text
bone scintigraphy reports within 6months prior to the first
index surgery in our institution’s EHR available for review.
Metastatic lesions were accounted for in the axial or appen-
dicular skeleton, and also included multiple myeloma and
lymphoma [12]. We excluded patients with (1) revision proce-
dures, defined as any subsequent procedure after the index
surgery addressing the metastatic lesion; and (2) kyphoplasty
or vertebroplasty only. The selection criteria were based on
previous published studies – in which ‘single versus multiple
bone metastases’ a meaningful clinical feature was – that
composed the cohort from which this current study
extracted the bone scintigraphy reports. All patients in the
cohort had at least a single bone metastasis. If a patient had
multiple preoperative bone scintigraphy reports, the free-text
report closest to surgery with a maximum of 6months was
obtained. If a patient underwent multiple surgeries, we con-
sidered the first surgery for bone metastases as the
index procedure.

EHRs of patients in our institutional database of meta-
static bone tumor were reviewed [13,14]. We identified 1780
potentially eligible patients after screening the medical

records, of which 1076 patients did not have a preoperative
bone scintigraphy within 6months. A total of 704 radiology
reports from 704 patients were included in this study
(Figure 1).

Ground truth

The primary outcome was defined as single versus multiple
bone metastases. This was manually annotated from free-text
bone scintigraphy reports using a binary classification (single
metastasis versus two or more metastases). The 704 selected
reports were manually reviewed by three independent
research coordinators (NK, BPF, JK). Each reviewer was
blinded to the labels generated by the other reviewers. No
additional clinical information was provided beside the free-
text bone scintigraphy reports. Conflicts between the three
reviewers were resolved by final research fellows (OQG,
MERB) to establish a ground truth. The accuracy for the three
reviewers was calculated with the Cohen’s kappa as an inter-
rater reliability estimate.

Statistics

Preprocessing
Prior analysis, the raw text notes required generic and
approach-specific preprocessing steps. First, free-text reports
were preprocessed in the following two ways: (1) cleaned
from redundant or duplicate information (e.g., white spaces

Inclusion:
- Pa�ents >18 years
- Operated 2002-2017
- Spinal and long-bone metastases
(including lymphoma and mul�ple
myeloma)

Exclusion (n=1076):
- No preopera�ve bone scin�graphy
report within 6-months
- mul�ple preopera�ve bone
scin�graphy reports

Bone scin�graphy reports
(n=704)

Reviewer 1 Reviewer 2 Reviewer 3

Training set
(n=563)

Test set
(n=141)

Conflicts resolved by
two research fellows

Pa�ents mee�ng the
ini�al cohort criteria

(n=1780)

Exclusion:
- Revision procedures
- Kyphoplasty or vertebroplasty

Figure 1. Flow diagram depicting the NLP selection and human interpretation. Training and test set split up in 80:20%.
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between paragraphs, time, date), line breaks, and stop words
(e.g., ‘and’, ‘for’, ‘the’); and (2) stemming which reduces
words into a common base or root (e.g., ‘increased’ and
‘uptake’ converted to ‘increas’ and ‘uptak’, respectively) (see
Appendix, Supplemental Digital Content 1). This transformed
the raw text into the most parsimonious representation of
the lexical meaning in a text note. Second, the bag-of-words
representation method was applied to describe the relative
frequency of words within a free-text. In this method, a
matrix is created with rows for every free-text notes and col-
umns for words (tokens) in the bone scintigraphy notes that
correspond with the occurrence and frequency of words in
the scintigraphy notes. Third, the term frequency-inverse
document frequency (TF-IDF) was used to adjust for common
and very rare words. This method reflects how important a
word is to a document and measures the number of times
that words appear in a given document relative to the fre-
quency of these words across all documents. The bag-of-
words and TF-IDF were used as final input for the algorithm.

Data analysis
A stratified 80:20 split of the total dataset of 704 patients
was done to create a training set (n¼ 563) and independent
test set (n¼ 141). An extreme gradient boosting (XGBoost)
machine learning algorithm was developed on the training
set to detect multiple bone metastases [15]. The final model
was evaluated on the independent test set, which was not
used in developing the NLP model. The output of the NLP
model is binary classification (single vs multiple bone meta-
stases). We used the following metrics to assess the model
performance: (1) discrimination [area under the receiver
operating curve (AUC), precision-recall curve (PRC), area
under the precision-recall curve, sensitivity (recall), specificity,
negative-predictive value (NPV), positive predictive value
(PPV), F1-score, negative likelihood ratio (LLR-), positive likeli-
hood ratio (LLRþ)]; (2) calibration (calibration slope and inter-
cept); and (3) overall performance (Brier score) [16]. The Brier

score ranges from 0 (perfect prediction) to 1 (worst predic-
tion). For correct interpretation of the Brier score a compari-
son should be performed with the null-model Brier score,
which assigns a predicted probability equal to the observed
prevalence of the outcome to each patient – in this study
the prevalence of multiple bone metastases in the dataset. A
Brier score lower than the null model Brier score indicates
greater performance of the algorithm (see Appendix,
Supplemental Digital Content 2).

Local explanations were provided to enable the ability to
highlight individuals words used by the algorithm to deter-
mine single versus multiple bone metastases in individual
free-text scintigraphy reports [17]. This figure will show fea-
tures in green that increased the estimation of the likelihood
of multiple metastases whereas the features in red are those
that decreased the estimation of the likelihood of single
metastases. Anaconda Distribution (Anaconda, Inc., Austin,
Texas), Python (Python Software Foundation, Wilmington,
Delaware), R version (The R Foundation, Vienna, Austria), and
RStudio (RStudio, Boston, Massachusetts) were used for
data analysis.

Results

A total of 704 free-text bone scintigraphy reports from 704
patients were included in this study and 617 (88%) had mul-
tiple bone metastases. The patients had a mean age of 62
(standard deviation of 12) and 374 (53%) were female. The
interrater reliability was adequate; the three reviewers gener-
ally agreed with each other (kappa ¼ 0.8). In the independ-
ent test set (n¼ 141) not used for model development, the
NLP algorithm achieved AUC-ROC of 0.97 (Figure 2(a)), AUC-
PRC of 0.99 (Figure 2(b)), calibration intercept of �0.41, and
calibration slope of 0.73 for classification of single versus
multiple bone metastases (Table 1). The Brier score for mul-
tiple bone metastases was 0.05 compared to the null model
Brier score (score for algorithm that estimates a probability

Figure 2. (A) Receiver operating curve and (B) Precision-Recall curves of NLP algorithm for multiple bone metastases in the independent testing set, n¼ 141. NLP:
natural language processing.
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equal to the population prevalence of multiple metastases
for every patient) of 0.011.

At a threshold of 0.10 and 0.90, the algorithm achieved a
F1-score of 0.96 and 0.96, sensitivity of 0.99 and 0.94, specifi-
city of 0.41 and 0.82, NPV of 0.88 and 0.67, and PPV of 0.92
and 0.97, respectively (Table 2). The algorithm, at the thresh-
olds of 0.10 and 0.90, correctly classified the presence of
multiple bone metastases in 123 and 117 reports (true posi-
tives) of the 124 who had multiple bone metastases in the
testing cohort (sensitivity 0.99 and 0.94, respectively) and
yielded 10 and 3 false positives (specificity 0.41 and 0.82,
respectively). Local explanation of an actual free-text report
demonstrated the specific words that drive toward (green)
and against (red) classifying this report as a multiple bone
metastasis (Figure 3); the algorithm used words such as

‘increas’, ‘fractur’, and ‘active’ in the note to detect the occur-
rence of multiple bone metastases.

Discussion

Many clinical features have no procedural or diagnosis code,
making them subject to error prone and labor-intensive
manual chart review. The amount of bone metastases is a
characteristic that lacks these codes but is associated with
adverse outcomes such as postoperative complications and
survival in oncologic populations [4–6]. NLP constitutes a
subfield of AI which shows promising results in analyzing the
free-text included in EHRs [10,18,19]. The goal of this study
was to develop an NLP algorithm for the binary classification
of single and multiple bone metastases in bone scintigraphy
reports of patients undergoing surgery for bone metastases.
Our NLP algorithm correctly classified the presence of mul-
tiple bone metastases in 117 of the 124 (sensitivity 0.94)
who had multiple bone metastases in the testing cohort and
yielded only 3 false positives (specificity 0.82). Pending exter-
nal validation, the NLP algorithm developed in this study
may be implemented as a means to aid clinicians and
researchers in tackling large amounts of data.

The manual process of extracting clinical features from
free-text can be time-consuming and labor-intensive, and
can therefore produce variable results [3]. With the recent
widespread use of electronic medical records, the use of
automated data extraction is on the rise [1]. However, few
studies used NLP to explore classification analysis of free-text
radiology reports for patients with metastases as well as
other malignancies. Senders et al. previously used NLP to
quantify brain metastases in magnetic resonance imaging
reports [20]. Similarly, their NLP model had a high AUC of
0.92 and accuracy of 82%. Other NLP studies analyzing non-
orthopedic oncologic radiology notes report comparable
high AUCs ranging from 0.91 to 0.99 [21–27]. In accordance
with these studies, with a modest dataset (n¼ 1000), an NLP
algorithm can be developed that extracts clinical features
from free-text radiology notes. Compared to prior studies,
this study developed algorithms capable of providing both

Table 1. Overall performance (95% confidence interval) of NLP algorithm for
multiple bone metastases in the independent testing set, n¼ 141.

NLP algorithm

AUC-ROC 0.97 (0.92, 0.99)
AUC-PRC 0.995 (0.986, 0.999)
Brier 0.05 (0.02, 0.08)
Calibration intercept –0.41 (–1.42, 0.60)
Calibration slope 0.73 (0.43, 1.02)
Null model Brier score ¼ 0.11

AUC-PRC: area under the precision-recall curve; AUC-ROC: area under the
receiver operating curve; NLP: natural language processing.

Table 2. Performance (95% confidence interval) of NLP algorithm at various
thresholds for multiple bone metastases in the independent testing
set, n¼ 141.

NLP algorithm

Threshold
¼ 0.90

Threshold
¼ 0.50

Threshold
¼ 0.10

Sensitivity 0.94 (0.89, 0.98) 0.98 (0.93, 0.99) 0.99 (0.96, 1.00)
Specificity 0.82 (0.57, 0.96) 0.71 (0.44, 0.90) 0.41 (0.18, 0.67)
Negative predictive value 0.67 (0.43, 0.85) 0.80 (0.52, 0.96) 0.88 (0.47, 1.00)
Positive predictive value 0.97 (0.93, 0.99) 0.96 (0.91, 0.99) 0.92 (0.87, 0.96)
F1-score 0.96 (0.91, 0.99) 0.97 (0.92, 0.99) 0.96 (0.91, 0.98)
LLR (þ) 5.35 (1.91, 14.9) 3.32 (1.59, 6.93) 1.69 (1.13, 2.51)
LLR (–) 0.07 (0.03, 0.15) 0.03 (0.01, 0.11) 0.02 (0.00, 0.15)

LLR-: negative likelihood ratio; LLRþ: positive likelihood ratio; NLP: natural lan-
guage processing.

Figure 3. Example of local explanation at the individual patient-level explanation for multiple bone metastases. By color-coding the algorithm visualizes which
words influence the prediction positively (green) or negatively (red) toward the outcome, in this case the presence of multiple bone metastases. In addition, the
algorithm provides a prediction percentage, and depending on the chosen threshold by the user, the algorithm generates a labeling of the outcome (depicted at
the bottom).
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estimations for likelihood of multiple bone metastases as
well as explanations at the population and individual report
level for multiple bone metastases.

The acceptability of a NLP algorithm’s error rate depends
on the application. For example, if the intention in research
is to accelerate the efficiency of manual review, higher false
positive errors rates are less concerning. The ‘loss’ would be
a reduced efficiency by increasing the number of charts
reviewed. In clinical practice different error rates and evalu-
ation metrics are important. For instance, achieving an <15%
error rate in medical concept classification corresponds with
human agreement on the same task [28]; however, the error
tolerance in daily practice might be lower, such as in misclas-
sifying history of allergies or comorbidities. When developing
a NLP algorithm, the tradeoffs between performance metrics
have implications on potential biases and should be guided
by the nature of the NLP task [29].

We believe the NLP methods presented in this study may
be useful in a range of orthopedics areas. First, a robust NLP
tool could support research by rapidly identifying specific
patients or diseases based on radiographical, pathological, or
clinical findings. For example, creating a cohort of patients’
multiple bone metastases can propel research in understand-
ing the impact of skeletal related events in this complicated
patient population. In addition, the clinical feature ‘single
versus multiple bone metastases’ can be used in various
studies as a risk factor for an outcome, as was the case for
the studies that supplied the bone-scintigraphy reports
[13,14]. This could substantially reduce reviewer burden and
error rate. Second, incorporating these NLP algorithms in
EHRs may benefit population-based surveillance efforts.
Third, NLP algorithms can be tailored for specific study
designs; for example, the NLP algorithm developed in this
study can extract clinical features that do not have specific
administrative procedural or diagnosis code, such as the out-
come in this study. Fourth, NLP algorithms can be used to
‘screen’ radiology reports for important information that may
have been inadvertently missed by clinicians in daily practice.
However, in view of the variability and complexity of used
language in radiology reports, together with an imperfect
NLP model, we believe that this NLP algorithm currently
remains to be restricted for research purposes.

This study has limitations. First, this was a retrospective
study with clinical notes from tertiary hospitals from one
health-care system. Multi-institutional cohorts and prospect-
ive, temporal, and external validation of the NLP algorithm
remains to be conducted to support generalizability of the
study findings to other medical institutions. Nevertheless,
this study provides a framework and supports an innovative
approach for developing NLP models for automating the
analysis of free-text radiology notes. Second, the ground
truth for binary classification was manual review. Despite
being labeled by three independent reviewers, human classi-
fication remains prone to error [2,3]. However, using human
consensus in establishing the ground truth is a commonly
used method in the absence of an absolute ground truth
[30]. Third, the NLP model was designed to classify single
and multiple metastases in only bone scintigraphy reports.

We did not design algorithms that would differentiate spe-
cific anatomic locations in reports of differing radiologic
modalities. Future studies should incorporate the perform-
ance of NLP in non-bone scintigraphy radiology reports to
quantify possible bone metastases and focus on differentiat-
ing the anatomical locations of bone metastases. Fourth,
local explanation of the NLP algorithm identified some fea-
tures (such as ‘fracture’ or ‘evid’) that appear to be clinically
irrelevant to the presence of the bone metastases. Fracture
may be clinically relevant because patients who had a patho-
logic fracture are more likely to have disseminated/advanced
disease with multiple bone metastases. Words/tokens like
‘evid’ may represent the features of radiologist lexicon when
delineating multiple metastases in our cohort but may repre-
sent overfitting to the available data such that the models
are not transportable to new, independent data. Moreover,
although over 50 radiologists contributed to this dataset
from two different hospitals, all radiology reports were from
one health-care system with potentially use of fixed phrases
to express certain type of findings. The algorithm may make
accurate predictions in this study sample but may not gener-
alize to other datasets. This emphasizes the need for external
validation of the study findings in order to support generaliz-
ability of the NLP algorithm to other medical institutions.
Fifth, future research may include other machine learning-
based NLP algorithms such as convolutional and recurrent
neural networks that may improve the performance demon-
strated here. Sixth, over half of the patients were excluded
due to the two exclusion criteria from this current study
design. Comparing baseline characteristics demonstrated sev-
eral differences between the included and excluded groups
(see Appendix, Supplemental Digital Content 3). However,
these clinical differences are not relevant for this study since
it has no implications on the study aim or the developed
NLP model as the model does not take into account clinical,
demographic, diagnosis, or treatment characteristics.
Nevertheless, we deem the limitations proportionate to the
strength of this NLP study. This study provides a proof-of-
concept of applying similar NLP techniques to extract clinical
features without procedural or diagnosis codes. To our know-
ledge, this is the first NLP study assessing an NLP algorithm
for extracting clinical features without medical codes from
free-text bone scintigraphy reports in the field of orthopedic
oncology. By using thorough crosschecked manual labeling,
this study provides valuable insights into the use of NLP in
in orthopedics and its future role in clinical and
research setting.

In conclusion, the widespread use of electronic patient-
generated health data has led to unprecedented opportuni-
ties for research purposes. AI-based NLP methods enable us
to automate the transformation of these unstructured free-
text to clinical features, thereby optimizing the speed, accur-
acy, and consistency of clinical chart review. This study pro-
vides an NLP algorithm that has the potential to automate
clinical data extraction from radiology notes in orthopedics.
Pending external validation, the NLP algorithm developed in
this study may be implemented as a means to aid clinicians
and researchers in tackling large amounts of data.
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