1,373 research outputs found

    Agglomeration externalities, innovation and regional growth: Theoretical perspectives and meta-analysis

    Get PDF
    Technological change and innovation and are central to the quest for regional development. In the globally-connected knowledge-driven economy, the relevance of agglomeration forces that rely on proximity continues to increase, paradoxically despite declining real costs of information, communication and transportation. Globally, the proportion of the population living in cities continues to grow and sprawling cities remain the engines of regional economic transformation. The growth of cities results from a complex chain that starts with scale, density and geography, which then combine with industrial structure characterised by its extent of specialisation, competition and diversity, to yield innovation and productivity growth that encourages employment expansion, and further urban growth through inward migration. This paper revisits the central part of this virtuous circle, namely the Marshall-Arrow-Romer externalities (specialisation), Jacobs externalities (diversity) and Porter externalities (competition) that have provided alternative explanations for innovation and urban growth. The paper evaluates the statistical robustness of evidence for such externalities presented in 31 scientific articles, all building on the seminal work of Glaeser et al. (1992). We aim to explain variation in estimation results using study characteristics by means of ordered probit analysis. Among the results, we find that the impact of diversity depends on how it is measured and that diversity is important for the high-tech sector. High population density increases the chance of finding positive effects of specialisation on growth. More recent data find more positive results for both specialization and diversity, suggesting that agglomeration externalities become more important over time. Finally, primary study results depend on whether or not the externalities are considered jointly and on other features of the regression model specification

    Microsatellite Stability in STR Analysis Aspergillus fumigatus Depends on Number of Repeat Units

    Get PDF
    More than a decade ago a short tandem repeat-based typing method was developed for the fungus Aspergillus fumigatus. This STRAf assay is based on the analysis of nine short tandem repeat markers. Interpretation of this STRAf assay is complicated when there are only one or two differences in tandem repeat markers between isolates, as the stability of these markers is unknown. To determine the stability of these nine markers, a STRAf assay was performed on 73–100 successive generations of five clonally expanded A. fumigatus isolates. In a total of 473 generations we found five times an increase of one tandem repeat unit. Three changes were found in the trinucleotide repeat marker STRAf 3A, while the other two were found in the trinucleotide repeat marker STRAf 3C. The di- or tetranucleotide repeats were not altered. The altered STRAf markers 3A and 3C demonstrated the highest number of repeat units (≄50) as compared to the other markers (≀26). Altogether, we demonstrated that 7 of 9 STRAf markers remain stable for 473 generations and that the frequency of alterations in tandem repeats is positively correlated with the number of repeats. The potential low level instability of STRAf markers 3A and 3C should be taken into account when interpreting STRAf data during an outbreak

    A priori model independent inverse potential mapping: the impact of electrode positioning

    Get PDF
    __Introduction:__ In inverse potential mapping, local epicardial potentials are computed from recorded body surface potentials (BSP). When BSP are recorded with only a limited number of electrodes, in general biophysical a priori models are applied to facilitate the inverse computation. This study investigated the possibility of deriving epicardial potential information using only 62 torso electrodes in the absence of an a priori model. __Methods:__ Computer simulations were used to determine the optimal in vivo positioning of 62 torso electrodes. Subsequently, three different electrode configurations, i.e., surrounding the thorax, concentrated precordial (30 mm inter-electrode distance) and super-concentrated precordial (20 mm inter-electrode distance) were used to record BSP from three healthy volunteers. Magnetic resonance imaging (MRI) was performed to register the electrode positions with respect to the anatomy of the patient. Epicardial potentials were inversely computed from the recorded BSP. In order to determine the reconstruction quality, the super-concentrated electrode configuration was applied in four patients with an implanted MRI-conditional pacemaker system. The distance between the position of the ventricular lead tip on MRI and the inversely reconstructed pacing site was determined. __Results:__ The epicardial potential distribution reconstructed using the super-concentrated electrode configuration demonstrated the highest correlation (R = 0.98; p < 0.01) with the original epicardial source model. A mean localization error of 5.3 mm was found in the pacemaker patients. __Conclusion:__ This study demonstrated the feasibility of deriving detailed anterior epicardial potential information using only 62 torso electrodes without the use of an a priori model

    Integrated whole-heart computational workflow for inverse potential mapping and personalized simulations

    Get PDF
    Background: Integration of whole-heart activation simulations and inverse potential mapping (IPM) could benefit the guidance and planning of electrophysiological procedures. Routine clinical application requires a fast and adaptable workflow. These requirements limit clinical translation of existing simulation models. This study proposes a comprehensive finite element model (FEM) based whole-heart computational workflow suitable for IPM and simulations. Methods: Three volunteers and eight patients with premature ventricular contractions underwent body surface potential (BSP) acquisition followed by a cardiac MRI (CMR) scan. The cardiac volumes were segmented from the CMR images using custom written software. The feasibility to integrate tissue-characteristics was assessed by generating meshes with virtual edema and scar. Isochronal activation maps were constructed by identifying the fastest route through the cardiac volume using the Möller-Trumbore and Floyd-Warshall algorithms. IPM's were reconstructed from the BSP's. Results: Whole-heart computational meshes were generated within seconds. The first point of atrial activation on IPM was located near the crista terminalis of the superior vena cave into the right atrium. The IPM demonstrated the ventricular epicardial breakthrough at the attachment of the moderator band with the right ventricular free wall. Simulations of sinus rhythm were successfully performed. The conduction through the virtual edema and scar meshes demonstrated delayed activation or a complete conductional block respectively. Conclusion: The proposed FEM based whole-heart computational workflow offers an integrated platform for cardiac electrical assessment using simulations and IPM. This workflow can incorporate patient-specific electrical parameters, perform whole-heart cardiac activation simulations and accurately reconstruct cardiac activation sequences from BSP's

    Current MUAC cut-offs to screen for acute malnutrition need to be adapted to gender and age : the example of Cambodia

    Get PDF
    Background Early identification of children 5 yrs. Therefore, this study aimed at defining gender and age-specific cut-offs to improve sensitivity of MUAC as an indicator of acute malnutrition. Methods To establish new age and gender-specific MUAC cut-offs, pooled data was obtained for 14,173 children from 5 surveys in Cambodia (2011-2013). Sensitivity, false positive rates, and areas under receiver-operator characteristic curves (AUC) were calculated using wasting for children = 5yrs as gold standards. Among the highest values of AUC, the cut-off with the highest sensitivity and a false positive rate 80% with the new cut-offs in comparison with the current WHO cut-offs. Conclusion Gender and age specific MUAC cut-offs drastically increased sensitivity to identify children with WHZ-score <-2 z-scores. International reference of MUAC cut-offs by age group and gender should be established to screen for acute malnutrition at the community level

    Non-invasive focus localization, right ventricular epicardial potential mapping in patients with an MRI-conditional pacemaker system ‐ a pilot study

    Get PDF
    Abstract Background With the advent of magnetic resonance imaging (MRI) conditional pacemaker systems, the possibility of performing MRI in pacemaker patients has been introduced. Besides for the detailed evaluation of atrial and ventricular volumes and function, MRI can be used in combination with body surface potential mapping (BSPM) in a non-invasive inverse potential mapping (IPM) strategy. In non-invasive IPM, epicardial potentials are reconstructed from recorded body surface potentials (BSP). In order to investigate whether an IPM method with a limited number of electrodes could be used for the purpose of non-invasive focus localization, it was applied in patients with implanted pacing devices. Ventricular paced beats were used to simulate ventricular ectopic foci. Methods Ten patients with an MRI-conditional pacemaker system and a structurally normal heart were studied. Patientspecific 3D thorax volume models were reconstructed from the MRI images. BSP were recorded during ventricular pacing. Epicardial potentials were inversely calculated from the BSP. The site of epicardial breakthrough was compared to the position of the ventricular lead tip on MRI and the distance between these points was determined. Results For all patients, the site of earliest epicardial depolarization could be identified. When the tip of the pacing lead was implanted in vicinity to the epicardium, i.e. right ventricular (RV) apex or RV outflow tract, the distance between lead tip position and epicardial breakthrough was 6.0±1.9 mm. Conclusions In conclusion, the combined MRI and IPM method is clinically applicable and can identify sites of earliest depolarization with a clinically useful accuracy

    Mechanochemical action of the dynamin protein

    Full text link
    Dynamin is a ubiquitous GTPase that tubulates lipid bilayers and is implicated in many membrane severing processes in eukaryotic cells. Setting the grounds for a better understanding of this biological function, we develop a generalized hydrodynamics description of the conformational change of large dynamin-membrane tubes taking into account GTP consumption as a free energy source. On observable time scales, dissipation is dominated by an effective dynamin/membrane friction and the deformation field of the tube has a simple diffusive behavior, which could be tested experimentally. A more involved, semi-microscopic model yields complete predictions for the dynamics of the tube and possibly accounts for contradictory experimental results concerning its change of conformation as well as for plectonemic supercoiling.Comment: 17 pages, 4 figures; typos corrected, reference adde

    Modifications to the Cauchy–Born rule: Applications in the deformation of single-walled carbon nanotubes

    Get PDF
    AbstractThis paper presents a study of the Cauchy–Born (CB) rule as applied to the deformation analysis of single-walled carbon nanotubes (SWNTs) that are modeled as 2-dimensional manifolds. The C–C bond vectors in the SWNT are assumed to deform according to the local deformation gradient as per the CB rule or a modified version thereof. Aspects of the CB rule related to spatial inhomogeneity of the deformation gradient at the atomic scale are investigated in the context of a specific class of extension–twist deformation problems. Analytic expressions are derived for the deformed bond lengths using the standard CB rule as well as modified versions of the standard CB rule. Since the deformation map is conveniently prescribed in this work, it is possible to compare the performance of these deformation rules with the exact solution (i.e. the exact analytic expression for the deformed bond vectors) given directly by the deformation map. This approach provides insights into the CB rule and its possible modifications for use in more complicated deformations where an explicit deformation map is not available. Specifically, it is concluded that in the case of inhomogeneous deformations at the atomic scale for which the CB rule is only approximate (as demonstrated in Section 1 of this paper), the mean value theorem in calculus can be used as a guide to modify the CB rule and construct a more rigorous and accurate atomistic–continuum connection. The deformed bond lengths are used to formulate an enriched continuum hyperelastic strain energy density function based on interatomic potentials (the multi-body Tersoff–Brenner [Tersoff, J., 1988. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000; Brenner, D.W., 1990. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471] empirical interatomic potential for carbon-carbon bonds is used in this work). The deformation map (and hence the deformation gradient, the bond vectors and the continuum strain energy density) contains certain parameters, some of which are imposed and others determined as a result of energy minimization in the standard variational formulation. Numerical results for kinematic coupling and binding energy per atom are presented in the case of imposed extension and twist deformations on representative chiral, zig-zag and armchair nanotubes using the CB rule and its modifications. These results are compared with the exact solution based on the deformation map which serves as a basis for evaluating the efficacy of these deformation rules. The ideas presented in this paper can also be directly extended to other lattices
    • 

    corecore