25 research outputs found

    Differential Gene Expression Segregates Cattle Confirmed Positive for Bovine Tuberculosis from Antemortem Tuberculosis Test-False Positive Cattle Originating from Herds Free of Bovine Tuberculosis

    Get PDF
    Antemortem tests for bovine tuberculosis (bTB) currently used in the US measure cell-mediated immune responses against Mycobacterium bovis. Postmortem tests for bTB rely on observation of gross and histologic lesions of bTB, followed by bacterial isolation or molecular diagnostics. Cumulative data from the state of Michigan indicates that 98 to 99% of cattle that react positively in antemortem tests are not confirmed positive for bTB at postmortem examination. Understanding the fundamental differences in gene regulation between antemortem test-false positive cattle and cattle that have bTB may allow identification of molecular markers that can be exploited to better separate infected from noninfected cattle. An immunospecific cDNA microarray was used to identify altered gene expression (P ≤ 0.01) of 122 gene features between antemortem test-false positive cattle and bTB-infected cattle following a 4-hour stimulation of whole blood with tuberculin. Further analysis using quantitative real-time PCR assays validated altered expression of 8 genes that had differential power (adj  P ≤ 0.05) to segregate cattle confirmed positive for bovine tuberculosis from antemortem tuberculosis test-false positive cattle originating from herds free of bovine tuberculosis

    Descriptive Epidemiology of Bovine Tuberculosis in Michigan (1975–2010): Lessons Learned

    Get PDF
    Despite ongoing eradication efforts, bovine tuberculosis (BTB) remains a challenge in Michigan livestock and wildlife. The objectives of this study were to (1) review the epidemiology of BTB in Michigan cattle, privately owned cervids, and wildlife between 1975 and 2010 and (2) identify important lessons learned from the review and eradication strategies. BTB information was accessed from the Michigan BTB Eradication Project agencies. Cattle herds (49), privately owned deer herds (4), and wild white-tailed deer (668) were found infected with BTB during the review period. BTB has occurred primarily in counties located at the northern portion of the state's Lower Peninsula. Currently used BTB eradication strategies have successfully controlled BTB spread. However additional changes in BTB surveillance, prevention, and eradication strategies could improve eradication efforts

    A 2200-year record of Andean Condor diet and nest site usage reflects natural and anthropogenic stressors

    Get PDF
    Understanding how animals respond to large-scale environmental changes is difficult to achieve because monitoring data are rarely available for more than the past few decades, if at all. Here, we demonstrate how a variety of palaeoecological proxies (e.g. isotopes, geochemistry and DNA) from an Andean Condor (Vultur gryphus) guano deposit from Argentina can be used to explore breeding site fidelity and the impacts of environmental changes on avian behaviour. We found that condors used the nesting site since at least approximately 2200 years ago, with an approximately 1000-year nesting frequency slowdown from ca 1650 to 650 years before the present (yr BP). We provide evidence that the nesting slowdown coincided with a period of increased volcanic activity in the nearby Southern Volcanic Zone, which resulted in decreased availability of carrion and deterred scavenging birds. After returning to the nest site ca 650 yr BP, condor diet shifted from the carrion of native species and beached marine animals to the carrion of livestock (e.g. sheep and cattle) and exotic herbivores (e.g. red deer and European hare) introduced by European settlers. Currently, Andean Condors have elevated lead concentrations in their guano compared to the past, which is associated with human persecution linked to the shift in diet.Fil: Duda, Matthew P.. Queen's University; CanadáFil: Grooms, Christopher. Queen's University; CanadáFil: Sympson, Lorenzo. Sociedad Naturalista Andino Patagonica; ArgentinaFil: Blais, Jules M.. University of Ottawa; CanadáFil: Dagodzo, Daniel. University of Ottawa; CanadáFil: Feng, Wenxi. Queen's University; CanadáFil: Hayward, Kristen M.. Queen's University; CanadáFil: Julius, Matthew L.. St. Cloud State University; Estados UnidosFil: Kimpe, Linda E.. University of Ottawa; CanadáFil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Layton Matthews, Daniel. Queen's University; CanadáFil: Lougheed, Stephen. Queen's University; CanadáFil: Massaferro, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Michelutti, Neal. Queen's University; CanadáFil: Pufahl, Peir K.. Queen's University; CanadáFil: Vuletich, April. Queen's University; CanadáFil: Smol, John P.. Queen's University; Canad

    Molecular Characterization of Noroviruses Detected in Diarrheic Stools of Michigan and Wisconsin Dairy Calves: Circulation of Two Distinct Subgroups

    Get PDF
    Noroviruses have emerged as the leading worldwide cause of acute non-bacterial gastroenteritis in humans. The presence of noroviruses in diarrheic stool samples from calves on Michigan and Wisconsin dairy farms was investigated by RT-PCR. Norovirus-positive samples were found on all eight farms studied in Michigan and on 2 out of 14 farms in Wisconsin. Phylogenetic analyses of partial polymerase and capsid sequences, derived for a subset of these bovine noroviruses, showed that these strains formed a group which is genetically distinct from the human noroviruses, but more closely related to genogroup I than to genogroup II human noroviruses. Examination of 2 full and 10 additional partial capsid (ORF2) sequences of these bovine strains revealed the presence of two genetic subgroups or clusters of bovine noroviruses circulating on Michigan and Wisconsin farms. One subgroup is “Jena-like”, the other “Newbury agent-2-like”
    corecore