42 research outputs found
Extended van Royen-Weisskopf formalism for lepton-antilepton meson decay widths within non-relativistic quark models
The classical van Royen-Weisskopf formula for the decay width of a meson into
a lepton-antilepton pair is modified in order to include non-zero quark
momentum contributions within the meson as well as relativistic effects.
Besides, a phenomenological electromagnetic density for quarks is introduced.
The meson wave functions are obtained from two different models: a chiral
constituent quark model and a quark potential model including instanton
effects. The modified van Royen-Weisskopf formula is found to improve
systematically the results for the widths, giving an overall good description
of all known decays.Comment: 22 pages, 3 figures, RevTex, epsfig. To be published in Nucl. Phys.
Photo-production of Nucleon Resonances and Nucleon Spin Structure Function in the Resonance Region
The photo-production of nucleon resonances is calculated based on a chiral
constituent quark model including both relativistic corrections H{rel} and
two-body exchange currents, and it is shown that these effects play an
important role. We also calculate the first moment of the nucleon spin
structure function g1 (x,Q^2) in the resonance region, and obtain a
sign-changing point around Q^2 ~ 0.27 {GeV}^2 for the proton.Comment: 23 pages, 5 figure
Radiative decays: a new flavour filter
Radiative decays of the orbital excitations of the ,
and to the scalars , and are shown to
provide a flavour filter, clarifying the extent of glueball mixing in the
scalar states. A complementary approach to the latter is provided by the
radiative decays of the scalar mesons to the ground-state vectors ,
and . Discrimination among different mixing scenarios is strong.Comment: 12 pages, 1 table, 0 figure
Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering
We propose that neutrino-proton elastic scattering, ,
can be used for the detection of supernova neutrinos in scintillator detectors.
Though the proton recoil kinetic energy spectrum is soft, with , and the scintillation light output from slow, heavily ionizing
protons is quenched, the yield above a realistic threshold is nearly as large
as that from . In addition, the measured proton
spectrum is related to the incident neutrino spectrum, which solves a
long-standing problem of how to separately measure the total energy and
temperature of , , , and .
The ability to detect this signal would give detectors like KamLAND and
Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex
The cosmic ray positron excess and neutralino dark matter
Using a new instrument, the HEAT collaboration has confirmed the excess of
cosmic ray positrons that they first detected in 1994. We explore the
possibility that this excess is due to the annihilation of neutralino dark
matter in the galactic halo. We confirm that neutralino annihilation can
produce enough positrons to make up the measured excess only if there is an
additional enhancement to the signal. We quantify the `boost factor' that is
required in the signal for various models in the Minimal Supersymmetric
Standard Model parameter space, and study the dependence on various parameters.
We find models with a boost factor greater than 30. Such an enhancement in the
signal could arise if we live in a clumpy halo. We discuss what part of
supersymmetric parameter space is favored (in that it gives the largest
positron signal), and the consequences for other direct and indirect searches
of supersymmetric dark matter.Comment: 11 pages, 6 figures, matches published version (PRD
Hadronic observables from SIS to SPS energies - anything strange with strangeness ?
We calculate and (+) rapidity
distributions and compare to experimental data from SIS to SPS energies within
the UrQMD and HSD transport approaches that are both based on string, quark,
diquark () and hadronic degrees of freedom. The
two transport models do not include any explicit phase transition to a
quark-gluon plasma (QGP). It is found that both approaches agree rather well
with each other and with the experimental rapidity distributions for protons,
's, and . Inspite of this apparent agreement both
transport models fail to reproduce the maximum in the excitation function for
the ratio found experimentally between 11 and 40 AGeV. A
comparison to the various experimental data shows that this 'failure' is
dominantly due to an insufficient description of pion rapidity distributions
rather than missing 'strangeness'. The modest differences in the transport
model results -- on the other hand -- can be attributed to different
implementations of string formation and fragmentation, that are not
sufficiently controlled by experimental data for the 'elementary' reactions in
vacuum.Comment: 46 pages, including 15 eps figures, to be published in Phys. Rev.
Measurement of the D+ and Ds+ decays into K+K-K+
We present the first clear observation of the doubly Cabibbo suppressed decay
D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay
Ds+ --> K-K+K+. These signals have been obtained by analyzing the high
statistics sample of photoproduced charm particles of the FOCUS(E831)
experiment at Fermilab. We measure the following relative branching ratios:
Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/-
0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) =
(8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure
Measurements of Branching Ratios
Using data collected by the fixed target Fermilab experiment FOCUS, we
measure the branching ratios of the Cabibbo favored decays , , and relative to to be
, , and ,
respectively. We report the first observation of the Cabibbo suppressed decay
and we measure the branching ratio relative to
to be . We also set 90%
confidence level upper limits for and relative to to
be 0.12 and 0.05, respectively. We find an indication of the decays and and set
90% confidence level upper limits for the branching ratios with respect to
to be 0.12 and 1.72, respectively. Finally, we
determine the 90% C.L. upper limit for the resonant contribution relative to to be 0.10.Comment: 14 pages, 8 figure
Measurement of the relative branching ratio BR(\Xi_c^+ \to p^+ K^-\pi^+)\BR(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)
We report the observation of the Cabibbo suppressed decay \Xi_c^+ \to p
K^-\pi^+ using data collected with the FOCUS spectrometer during the 1996--97
Fermilab fixed target run. We find a \Xi_c^+ signal peak of 202\pm35 events. We
have measured the relative branching ratios BR(\Xi^+_c\to p
K^-\pi^+)/BR(\Xi^+_c\to\Xi^-\pi^+\pi^+)= 0.234 \pm 0.047 \pm 0.022 and
BR(\Xi^+_c\to p \bar{K}^*(892)^0)/BR(\Xi^+_c\to p K^-\pi^+)= 0.54 \pm 0.09 \pm
0.05 .Comment: 9 pages, 4 figure
Observation of a 1750 MeV/c^2 Enhancement in the Diffractive Photoproduction of K^+K^-
Using the FOCUS spectrometer with photon beam energies between 20 and 160
\gev, we confirm the existence of a diffractively photoproduced enhancement in
at 1750 \mevcc with nearly 100 times the statistics of previous
experiments. Assuming this enhancement to be a single resonance with a
Breit-Wigner mass shape, we determine its mass to be
\mevcc and its width to be \mevcc. We find no
corresponding enhancement at 1750 \mevcc in , and again neglecting any
possible interference effects we place limits on the ratio . Our results are consistent with previous
photoproduction experiments, but, because of the much greater statistics,
challenge the common interpretation of this enhancement as the
seen in annihilation experiments.Comment: 10 pages, 5 figure