166 research outputs found

    Biodiversity-food trade-offs when agricultural land is spared from production

    Get PDF
    The post-2020 Global Biodiversity Framework proposes to address biodiversity decline by expanding areas under conservation. Biodiversity conservation in agricultural landscapes, the world’s predominant land use, could involve sparing, or setting aside, agricultural land from production, implying biodiversity-food trade-offs. Employing bird species and agricultural data, we undertake a novel empirical analysis of such trade-offs on a set-aside scheme implemented in England between 1992-2007. Expanding set-aside increases bird species abundance and richness by, respectively, 1.2-2.1% and 0.7-0.9%, but has no impact on diversity (ShannonWiener index). These effects are discontinuous, subject to thresholds in set-aside areas. A minimum 3% of agricultural land set aside is required for a positive effect on biodiversity while 13% of agricultural land generates a 15-25% and 30-35% increase in abundance and richness, respectively. Estimates of short- and long-run effects show that impacts are larger in the long-run. Expanding set-aside is also associated with a 10-17% decline in cereal output, with weak evidence of an attenuating land-sparing effect on yields. Our results suggest that although biodiversity-food trade-offs are likely in high-yield agricultural landscapes, such as those in England, the risk of a reduction in food supply could be minimised in settings where there is still scope for intensification

    Spatiotemporal Statistical Downscaling for the Fusion of In-lake and Remote Sensing Data

    Get PDF
    This paper addresses the problem of fusing data from in-lake monitoring programmes with remote sensing data, through statistical downscaling. A Bayesian hierarchical model is developed, in order to fuse the in-lake and remote sensing data using spatially-varying coefficients. The model is applied to an example dataset of log(chlorophyll-a) data for Lake Erie, one of the Great Lakes of North America

    Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters

    Get PDF
    The Earth's surface waters are a fundamental resource and encompass a broad range of ecosystems that are core to global biogeochemical cycling and food and energy production. Despite this, the Earth's surface waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Here we explore the opportunities that Earth observation (EO) has to offer to basin-scale monitoring of water quality over the surface water continuum comprising inland, transition and coastal water bodies, with a particular focus on the Danube and Black Sea region. This review summarises the technological advances in EO and the opportunities that the next generation satellites offer for water quality monitoring. We provide an overview of algorithms for the retrieval of water quality parameters and demonstrate how such models have been used for the assessment and monitoring of inland, transitional, coastal and shelf-sea systems. Further, we argue that very few studies have investigated the connectivity between these systems especially in large river-sea systems such as the Danube-Black Sea. Subsequently, we describe current capability in operational processing of archive and near real-time satellite data. We conclude that while the operational use of satellites for the assessment and monitoring of surface waters is still developing for inland and coastal waters and more work is required on the development and validation of remote sensing algorithms for these optically complex waters, the potential that these data streams offer for developing an improved, potentially paradigm-shifting understanding of physical and biogeochemical processes across large scale river-sea continuum including the Danube-Black Sea is considerable

    Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover

    Get PDF
    Atmospheric correction of remotely sensed imagery of inland water bodies is essential to interpret water-leaving radiance signals and for the accurate retrieval of water quality variables. Atmospheric correction is particularly challenging over inhomogeneous water bodies surrounded by comparatively bright land surface. We present results of AisaFENIX airborne hyperspectral imagery collected over a small inland water body under changing cloud cover, presenting challenging but common conditions for atmospheric correction. This is the first evaluation of the performance of the FENIX sensor over water bodies. ATCOR4, which is not specifically designed for atmospheric correction over water and does not make any assumptions on water type, was used to obtain atmospherically corrected reflectance values, which were compared to in situ water-leaving reflectance collected at six stations. Three different atmospheric correction strategies in ATCOR4 was tested. The strategy using fully image-derived and spatially varying atmospheric parameters produced a reflectance accuracy of ±0.002, i.e., a difference of less than 15% compared to the in situ reference reflectance. Amplitude and shape of the remotely sensed reflectance spectra were in general accordance with the in situ data. The spectral angle was better than 4.1° for the best cases, in the spectral range of 450–750 nm. The retrieval of chlorophyll-a (Chl-a) concentration using a popular semi-analytical band ratio algorithm for turbid inland waters gave an accuracy of ~16% or 4.4 mg/m3compared to retrieval of Chl-a from reflectance measured in situ. Using fixed ATCOR4 processing parameters for whole images improved Chl-a retrieval results from ~6 mg/m3difference to reference to approximately 2 mg/m3. We conclude that the AisaFENIX sensor, in combination with ATCOR4 in image-driven parametrization, can be successfully used for inland water quality observations. This implies that the need for in situ reference measurements is not as strict as has been assumed and a high degree of automation in processing is possible

    Results of a Manned Over Pressurization Event in the Extravehicular Mobility Unit Space Suit Assembly

    Get PDF
    The Neutral Buoyancy Laboratory (NBL) is a 102 x 202 x 40-foot-deep tank holding over 6 million gallons of water used to simulate weightlessness for Astronaut training. The maxim "Train Like You Fly" refers to the desire to have the suit perform, during training, as close as possible to how it performs during an Extra-Vehicular Activity (EVA), particularly with respect to mobility. Therefore, the Space Suit Assembly (SSA) used in the NBL is a downgraded hardware version of the flight SSA; it is not designed for the NBL environment or operations. A classification system defines the flight Space Suit Assembly hardware as Class I, and the NBL training hardware SSA as Class IIIW. On July 20, 2017, during a manned training event in the NBL, the SSA was inadvertently over-pressurized to 22 psid; normal operating pressure being 4.3 psid. The suit subject was removed from the suit with no injury. The event was investigated by a NASA Mishap Team. The Team investigated common causes and differences between the Class I and Class IIIW Extra-vehicular Mobility Unit (EMU). The investigation determined that the event was limited to Class IIIW hardware and its external flow-controlled open loop ventilation systems. The flight EMU is a pressure regulated closed loop ventilation system. This paper will examine the differences between the Class I and Class IIIW SSA hardware and provide details of the Mishap Investigation. Corrective actions taken to mitigate risk with hardware, operations, and hazard documentation will be discussed

    Towards a comprehensive C-budgeting approach of a coccolithophorid bloom in the Northern Bay of Biscay (June 2006)

    Full text link
    A biogeochemical multidisciplinary survey was carried out in the northern Bay of Biscay, in early June 2006, during which 14C-based primary production and calcification were determined as well as O2-based community respiration. Contemporary remote sensing images showed several patches of high reflectance (HR) in the investigated area. Based on remote sensing and in situ measured biogeochemical parameters, the area exhibited varying coccolithophorid bloom stages from its early development to the post-bloom stages. The major HR patch, characterizing a post-stationary stage of the bloom, was located between 48°N and 49°N over the shelf along the continental margin. It was associated with moderate chlorophyll-a levels, never exceeding 1.0 µg L-1, dissolved phosphorus and silica depletion, and undersaturation of CO2 with respect to atmospheric equilibrium. Considered as the main drivers of the C cycle in this area, the CO2 fluxes associated with primary production, calcification and respiration were integrated in order to provide a comprehensive C budget in the area

    Processing Images from the Zwicky Transient Facility

    Get PDF
    The Zwicky Transient Facility is a new robotic-observing program, in which a newly engineered 600-MP digital camera with a pioneeringly large field of view, 47~square degrees, will be installed into the 48-inch Samuel Oschin Telescope at the Palomar Observatory. The camera will generate ∼1\sim 1~petabyte of raw image data over three years of operations. In parallel related work, new hardware and software systems are being developed to process these data in real time and build a long-term archive for the processed products. The first public release of archived products is planned for early 2019, which will include processed images and astronomical-source catalogs of the northern sky in the gg and rr bands. Source catalogs based on two different methods will be generated for the archive: aperture photometry and point-spread-function fitting.Comment: 6 pages, 4 figures, submitted to RTSRE Proceedings (www.rtsre.org

    Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type Ia Supernova

    Get PDF
    We have measured the rest-frame B,V, and I-band light curves of a high-redshift type Ia supernova (SN Ia), SN 1999Q (z=0.46), using HST and ground-based near-infrared detectors. A goal of this study is the measurement of the color excess, E_{B-I}, which is a sensitive indicator of interstellar or intergalactic dust which could affect recent cosmological measurements from high-redshift SNe Ia. Our observations disfavor a 30% opacity of SN Ia visual light by dust as an alternative to an accelerating Universe. This statement applies to both Galactic-type dust (rejected at the 3.4 sigma confidence level) and greyer dust (grain size > 0.1 microns; rejected at the 2.3 to 2.6 sigma confidence level) as proposed by Aguirre (1999). The rest-frame II-band light cur ve shows the secondary maximum a month after B maximum typical of nearby SNe Ia of normal luminosi ty, providing no indication of evolution as a function of redshift out to z~0.5. A n expanded set of similar observations could improve the constraints on any contribution of extragalactic dust to the dimming of high-redshift SNe Ia.Comment: Accepted to the Astrophysical Journal, 12 pages, 2 figure

    Providing comprehensive and consistent access to astronomical observatory archive data: the NASA archive model

    Get PDF
    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change
    • …
    corecore