2 research outputs found

    Changes in gene expression in space and time orchestrate environmentally mediated shaping of root architecture

    Get PDF
    Shaping of root architecture is a quintessential developmental response that involves the concerted action of many different cell types, is highly dynamic and underpins root plasticity. To determine to what extent the environmental regulation of lateral root development is a product of cell type preferential activities, we tracked transcriptomic responses to two different treatments that both change root development in Arabidopsis thaliana, at an unprecedented level of temporal detail. We found that individual transcripts are expressed with a very high degree of temporal and spatial specificity, yet biological processes are commonly regulated, in a mechanism we term response nonredundancy. Using causative gene network inference to compare the genes regulated in different cell types and during responses to nitrogen and a biotic interaction we found that common transcriptional modules often regulate the same gene families, but control different individual members of these families, specific to response and cell type. This reinforces that the activity of a gene cannot be defined simply as molecular function; rather, it is a consequence of spatial location, expression timing and environmental responsiveness

    The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining

    Get PDF
    The information that connects genotypes and phenotypes is essentially embedded in research articles written in natural language. To facilitate access to this knowledge, we constructed a framework for the curation of the scientific literature studying the molecular mechanisms that control leaf growth and development in Arabidopsis thaliana (Arabidopsis). Standard structured statements, called relations, were designed to capture diverse data types, including phenotypes and gene expression linked to genotype description, growth conditions, genetic and molecular interactions, and details about molecular entities. Relations were then annotated from the literature, defining the relevant terms according to standard biomedical ontologies. This curation process was supported by a dedicated graphical user interface, called Leaf Knowtator. A total of 283 primary research articles were curated by a community of annotators, yielding 9947 relations monitored for consistency and over 12,500 references to Arabidopsis genes. This information was converted into a relational database (KnownLeaf) and merged with other public Arabidopsis resources relative to transcriptional networks, protein–protein interaction, gene co-expression, and additional molecular annotations. Within KnownLeaf, leaf phenotype data can be searched together with molecular data originating either from this curation initiative or from external public resources. Finally, we built a network (LeafNet) with a portion of the KnownLeaf database content to graphically represent the leaf phenotype relations in a molecular context, offering an intuitive starting point for knowledge mining. Literature curation efforts such as ours provide high quality structured information accessible to computational analysis, and thereby to a wide range of applications
    corecore