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LARGE-SCALE BIOLOGY ARTICLE

Changes in Gene Expression in Space and Time Orchestrate
Environmentally Mediated Shaping of Root Architecture CC-BY
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Shaping of root architecture is a quintessential developmental response that involves the concerted action of many different
cell types, is highly dynamic, and underpins root plasticity. To determine to what extent the environmental regulation of lateral
root development is a product of cell-type preferential activities, we tracked transcriptomic responses to two different
treatments that both change root development in Arabidopsis thaliana at an unprecedented level of temporal detail. We found
that individual transcripts are expressed with a very high degree of temporal and spatial specificity, yet biological processes
are commonly regulated, in a mechanism we term response nonredundancy. Using causative gene network inference to
compare the genes regulated in different cell types and during responses to nitrogen and a biotic interaction, we found that
common transcriptional modules often regulate the same gene families but control different individual members of these
families, specific to response and cell type. This reinforces that the activity of a gene cannot be defined simply as molecular
function; rather, it is a consequence of spatial location, expression timing, and environmental responsiveness.

INTRODUCTION

As sessile organisms, plants are highly responsive to the envi-
ronment, at both the molecular and phenotypic levels. A facet of
multicellularity is that it enables organisms to have the scope for

differentiation between different cell types and within a cell type
as it develops. To maintain compartmentalization of specialized
functions, different cell types maintain distinct transcriptional
programs. This discovery was facilitated by the use of fluores-
cence-activated cell sorting (FACS), which enables isolation and
analysis of endogenous responses in specialized cell types
(Birnbaum et al., 2003, 2005; Brady et al., 2007). Cell-type spe-
cialization manifests not only in the development of different cell
type functions, but also in how different cell types respond to their
environment. For example, lateral root organogenesis is initiated
specifically in the pericycle cell type through a program of asym-
metric, anticlinal cell division and is a root developmental process
that is highly responsive to environmental change (Malamy and
Benfey, 1997). This enables the architecture of the root to be tuned
to particular environments or remodeled over time, a manifestation
of plant plasticity. In response to nitrogen influx, a vast array of
changes occurs at themolecular level in plants, and these changes
influence root development. However, it is unclear how short-term
and long-term changes are linked temporally. Furthermore, al-
thoughmanyenvironmental factorsaffect root development,wedo
not know the extent to which lateral root development regulation in
different environments is controlled by the same genes.
FACS-based approaches to cell-type-specific profiling have pre-

viously been used to study a range of processes and environmental
responsesintheroot.Previousstudieshaveaddressedtheresponses
of distinct root layers to stresses, including salinity (Dinneny et al.,
2008;Gengetal., 2013), lowpH,andsulfur (Iyer-Pascuzzietal., 2011).
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FACShas also been used to quantify endogenous auxin levels at
the tissue-specific level (Petersson et al., 2009) and to identify
auxin-responsive genes (Bargmann et al., 2013). Other studies
have employed FACS to isolate cells of the root quiescent center
(Nawy et al., 2005) and generate metabolic profiles of distinct
root cell types (Moussaieff et al., 2013).

Complementary to spatial analysis of responses is the dis-
section at a temporal level. Collection of sequential time points of
transcriptomicdataenables theuseofnetwork inferencemethods
to reconstruct causative gene networks (Krouk et al., 2010;
Windram et al., 2012; Lewis et al., 2015). Using network inference
methods, it is thus possible to make predictions of regulatory
interactions andhow these interactions are influencedbydifferent
treatments or under different conditions (Hecker et al., 2009;
Krouk et al., 2010; Emmert-Streib et al., 2012). Furthermore,
networks can identify control hubs and enable prediction of the
effect of genetic perturbations (Krouk et al., 2010, 2013). In the
case of root environmental responses, nitrogen responses have
been studied at thewhole root level over the firstminutes of nitrate
influx (Krouk et al., 2010) at 2 h in isolated root cell types (Gifford
et al., 2008) and at the phenotypic level to look at longer-term
effects of nitrogen on root development (Gifford et al., 2013).
A number of previous network inference studies have inves-
tigated the response of Arabidopsis thaliana to nitrogen and
have helped to identify major nitrogen-responsive sensors and
hubs. The best understood of these is the nitrate transporter/
sensor NRT1.1 which also plays a key role in signal trans-
duction during nitrogen responses (Ho et al., 2009). During the
early nitrate response, NRT1.1 is responsible for the activation
of numerousgenes involved innitrate assimilation. There is also
strong evidence thatNRT1.1 represses lateral root branching in
response to depleted nitrate levels by diverting accumulating
auxin from lateral root primordia (Bouguyon et al., 2015). Two
bZIP family transcription factors that are downstream of
NRT1.1, TGA1 and TGA4, have been demonstrated to regulate
expressionof thenitrate transportersNRT2.1andNRT2.2 (Alvarez
et al., 2014). It has also been shown that the key circadian clock
gene CCA1 is regulated by organic nitrogen signaling and in turn
regulates genes involved in nitrogen assimilation itself (Gutiérrez
et al., 2008).

However, each of these studies captures a specific snapshot
of nitrogen responsiveness and is insufficient for reconstruction
of the temporal link between molecular and developmental
responses. In order to address this important question, we
tracked gene expression responses in roots over a 48-h time
series in Arabidopsis. This allowed us to compare temporal
changes in the pericycle to those in the cortex, which has po-
tential for postdifferentiation development (e.g., nodule devel-
opment in leguminous species), but does not divide during
lateral root development. We used two environmental pertur-
bations (replete nitrate and rhizobia) that each affect lateral root
development and asked to what extent similar changes in gene
expression are involved in similar developmental responses.
This unique high-resolution time series analysis enabled an
investigation of the links betweenmolecular and developmental
dynamicbehaviors.Our data suggest that the responsivenessof
different cell types to the environment is a fundamental func-
tional aspect of a multicellular system such as the root.

RESULTS

Cell-Type Profiling of Arabidopsis Roots Reveals Dynamic
Gene Expression over Time

To characterize the transcriptional changes that underlie changes
in lateral root development in response toenvironmental changes,
we subjected Arabidopsis root cell-type-specific GFP marker
lines to tissue-specific transcriptional analysis after either treat-
ment with nitrogen, inoculation with rhizobia, or no treatment (as
a baseline). To investigate transcriptional changes underlying or
preceding developmental regulation, we analyzed the pericycle
cellsusingaGFPmarker specific toxylempolepericyclecells from
where lateral root primordia originate via reactivation of cell di-
vision in differentiated cells (Gifford et al., 2008).We also analyzed
a GFP marker line specific to cortical cells (Brady et al., 2007),
since this is a more outer cell type in the root, providing the op-
portunity to examine spatial variation in responses across root cell
types.A timeseriesof samplingwasperformedovera48-hgrowth
period starting at dawn (= time point 0) on day 9 postgermination,
using protoplast generation and FACS (Gifford et al., 2008)
(Figures 1A to 1E), and the whole experiment was performed in at
least biological triplicate. Each biological replicate sample (for
each time point in each time series and cell type) consisted of
total mRNA isolated from ;10,000 FACS-isolated cells from
pooled harvested roots from ;200 GFP-expressing seedlings
grown on the same plate. Each (destructive) sample was con-
sidered as an independent replicate within subsequent gene
expression and network inference analysis (see Methods).
We first investigated changes in transcriptional levels over the

untreated 48-h time series starting with the first harvest of cells
at dawn to establish how gene expression changes over time
within the cortex or pericycle. We found that 6432 transcripts
were differentially expressed (DE) over time in either untreated
cortex (CU; 2041 DE transcripts) or pericycle (PU; 4682 DE
transcripts) cells (Figure 1F; Supplemental Data Set 1 and
Supplemental Figures 1A to 1C). Twice as many transcripts
change in the pericycle as the cortex. To investigate the range of
differential expression in time profiles, we clustered DE tran-
script expression within each time series using SplineCluster
(seeMethods). This generated 95 clusters for theCU time series
and 106 clusters for the PU time series (Supplemental Figures
1E and 1F). To help investigate timing changes, we grouped
clusters chronologically into 4 classes of gene response speeds
thatwe term for discussionpurposes: “immediate” (by1h), “fast”
(1–2 h), “downstream” (2–6 h), and “late” (6+ h), determined by
the time of the first significant time point (Figure 1G). We further
divided clusters into those whose expression was generally
increased (upregulated) or decreased (downregulated) com-
pared with the 0-h time point (see Methods). Clusters are clearly
demarcated over time. For instance, the immediate responders
show a dominant activation/inhibition within 1 h, with gradually
slower changes being evident through the other three classes
(Supplemental Figures 1E and 1F). In the cortex, 29% of gene
expression changes were immediate, 21% fast, 42% down-
stream, and 7% late (Figure 1H; Supplemental Figure 1E). By
contrast, in the pericycle, 97% of varying genes showed
a substantial expression change within 2 h; 48% are immediate
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Figure 1. Time-Series Profiling of Gene Expression within Isolated Cortical and Pericycle Cells Reveals Dynamic and Cell-Type Distinct Transcriptomes.

(A) Schematic of an Arabidopsis root tip, illustrating different cell types.
(B) and (C) Confocal microscopy images of the cortex-specific cell line ProCo2:YFPH2B (Heidstra et al., 2004). (B) and the pericycle-specific line E3754
(Gifford et al., 2008) (C) used in experiments. Bars = 25 mm.
(D) Illustration of time series harvested for each cell type.
(E)Samplepreparation:At each timepoint, rootsareharvestedandsubjected toprotoplast generation treatment, cells aresortedusingFACS,and thenRNA
is extracted, labeled, and hybridized to microarrays (diagram adapted from Grønlund et al., 2012).
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responders, with 49%being fast, 2%being downstream, and 1%
being late (Figure 1I; Supplemental Figure 1F). For each time
series’ clusters, there were a wide range of differential expression
patterns. These include transcripts whose expression increases
over time (e.g., fast upregulated cluster CU62; Supplemental Data
Set 2), decreases over time (e.g., pericycle immediate down-
regulated cluster PU37; Supplemental Data Set 2), as well as
transcripts that cycle over time (e.g., putative circadian clusters
CU37 and PU64; Supplemental Data Set 2). Clustering also
delineates transcripts with the same expression timing but dif-
ferent expression amplitude (e.g., cortex immediate upregulated
clusters CU47 and CU50 or pericycle immediate upregulated
clustersPU87andPU88;SupplementalDataSet2).Overall then,
the pericycle appears to have more frequent and earlier (in the
day) perturbations in gene expression, potentially reflecting the
fact that the pericycle is comprised of cells at a wide range of
mitotic activities (Malamy and Benfey, 1997).

A Differentially Expressed Core of Genes Coordinates
Changes in Cortex and Pericycle

Despite the large numbers of DE transcripts in the cortex and
pericycle, there is a very high degree of cell specificity with only
291 “core” transcripts (transcripts that are DE in both cell types)
differentially expressed (as a function of time) in both of the cell
types (Figure 1F). The expression responses of the core tran-
scripts reflect well the range of patterns of all transcripts that are
differentially expressed in cells; despite accounting for only 14%
(cortex) and 6% (pericycle) of the DE genes, these core 291 tran-
scripts were present in 63%of the clusters. A similar percentage of
clusters were reflected from each cell type, invariant of cluster size
and including clusters in all four response timing groups. This
indicates that this core of DE transcripts is part of awide range of
responses across time in both cell types and could thus act to
coordinate the function of these cell types in the context of the
whole root, including housekeeping processes such as primary
metabolism.

Among these 291 core dynamic transcripts, theGeneOntology
(GO) term “circadian rhythm” was overrepresented (P < 9.15E-4),
including five previously characterized core circadian clock genes
(Hsu and Harmer, 2014). LHY (LATE ELONGATEDHYPOCOTYL),
CCA1 (CIRCADIAN CLOCK-ASSOCIATED1), PRR5 (PSEUDO-
RESPONSE REGULATOR5), PRR9, and EARLY FLOWERING4
are found to be expressed in accordance with their characterized
dynamicsandare invariantbetweencell types, supporting the time-
series nature of our data (Supplemental Figure 2 andSupplemental
Data Set 2). The core group also includes transcripts important in

a range of metabolic and cellular processes that could be con-
sidered to be important for root function, independent of cell type
(SupplementalDataSet 2). For example, the nucleosomeassembly
protein NRP1 (NAP1-RELATED PROTEIN1), together with NRP2,
has already been shown to be critical for cell cycle regulation in
roots (Zhuetal.,2006).TET1/TRN2 (TETRASPANIN1/TORNADO2),
a gene that is expressed throughout the root and plays a role in
determining cell fate in the root apical meristem (Wang et al.,
2015) is regulatedbyPRR5andERF115 (ETHYLENE-RESPONSIVE
TRANSCRIPTION FACTOR115) (Wang et al., 2015). Consistent
with this,we foundTET1andPRR5 tobecoregulated (fast cluster
CU62 for PRR5 and downstream cluster CU66 for TET1; fast
cluster PU79 for PRR5 and downstream cluster PU76 for TET1;
Supplemental Data Set 2).
To determine if the 291 core transcripts also share the same

temporal dynamics between the pericycle and cortex, we com-
pared their expression using Gaussian process modeling (see
Methods). We found that 40% have identical expression patterns
(invariant; including clock genes CCA1 and LHY; Figure 1J), 40%
have an expression pattern that is similar (e.g., MICROTUBULE-
ASSOCIATED PROTEIN 65-1; fast downregulated cluster CU14
and immediate downregulated cluster PU46; Supplemental Data
Set 2), and only 20% have expression whose pattern varies
significantly between the cortex and pericycle (e.g., RAB GTPase
HOMOLOG G1; immediate downregulated cluster CU73 and
immediate activated cluster PU87; Supplemental Data Set 2).
Together, this suggests that if transcripts are differentially
expressed in different cell types, they are often under the same
directional control. Thismakes sense for critical functions such
as the circadian clock, whose invariant expression between
cell types enables other functions to be coordinated across the
root as a whole.

Reprogramming of Cell-Type Responses after
Nitrogen Influx

The plant root response to nitrogen has previously been found to
be highly cell type specific; however, this conclusion was made
from work at a single time point after nitrogen treatment (Gifford
et al., 2008). Other work has analyzed an early time series of
nitrogen responses to create a functional timeline, but at the
whole-root level where signals from several cell types are mixed
(Krouk et al., 2010). To investigate how nitrogen responses are
partitioned across a longer-term environmental exposure, we
followed the same experimental design as above, but instead,
immediately after the 0-h time point, seedlings were treated with
replete nitrogen by transferring them to plates containing 5 mM

Figure 1. (continued).

(F)Venndiagramshowing theDEtranscriptswithin theuntreated timeseries in thecortex (CU)andpericycle (PU); inparentheses ineachcaseare thenumber
of transcriptsannotatedas transcription factors.Mostof the291coregenesaresimilarly expressedbetween thecortexandpericycle; thecolorbar indicates
the degree of differential expression (measured by GP2S); light gray = invariant, mid-gray = no evidence either way, and dark gray = variant.
(G) to (I) The spread of cortical (H) and pericycle (I) DE transcripts within each response time category; immediate, fast, downstream, or late ([G]; rep-
resentative fast change CU57) reveal that a particularly large proportion of the pericycle transcriptome is rapidly regulated.
(J) The core regulated transcripts include key clock components, e.g., LHY and CCA1, which are differentially expressed over time in an invariant fashion
between cell types (late downregulated CU37, downstream downregulated PU64); error bars, SE with an average sample size of 2.95 replicates.
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NH4NO3. In this case, we used a Gaussian process method
(GP2S) to determine which of the dynamic transcripts change
upon N treatment relative to the untreated time series. We again
found a very high level of cell type preference in the N response,
with 2404 transcripts N-regulated only in the cortex (CN),
2382 transcripts N-regulated only in the pericycle (PN), and
450 transcripts (only 16% of total) N-regulated in both cell types
(Figures 2A to 2C). All differentially expressed transcripts were
clustered using SplineCluster, generating 42 clusters for CN and
29 for PN (Supplemental Figure 3).

Supporting the effect of our N treatment, we detected many
N-response markers (Canales et al., 2014) in our data (13 only in
cortex, 7only inpericycleand11 inboth [core]; SupplementalData
Set 2). These N-response markers are typically found in whole
roots; thus, their cell-type responses here suggest that they are
strongly regulated in those cell types. Many of these transcripts
are in clusters PU6/PU11 and CU14 (Supplemental Data Set 2),
suggesting that these represent N-responsive modules. By an-
alyzing the expression regulation of key components of nitrogen
uptake (nitrogen and ammonia transporters) and metabolism
(primary nitrogen metabolism), it is possible to analyze the tem-
poral aspects of nitrogen uptake across the tissues (Figure 2B).
Both the high-affinity nitrate transporter NRT2.1 (NITRATE
TRANSPORTER2.1) and the dual-affinity nitrate transporter
NRT1.1 aswell as nitrate reductase activity (NIR1) are immediately
upregulated specifically in the cortex (Figure 2B). The rapid upregu-
lation ofNRT2.1 in the cortex (cluster CN3, immediate; Supplemental
Data Set 2) corroborates previous expression data (Feng et al., 2011)
and is consistent with the role of NRT2.1 in signaling rescue from N
starvation, preparing the plant to start absorbingN again (Yong et al.,
2010). At the same time (“immediate”), nitrite reductase (NIA1) and
other nitrogen transporters (NRT2.3 andNRT2.5) are downregulated
in the pericycle, suggesting a tissue-specific effect. Ammonium
transport (via AMT1;1) appears to be downregulated in both tissue
types. Nitrogen signaling via the key N-responsive hub bZIP1
(Obertello et al., 2010) is immediately upregulated in both cortex
and pericycle. Other N-responsive regulators that we found
include the GARP transcription factor HRS1, which integrates N
and P signaling in the root and is N-induced late in the pericycle
(cluster PN8; Supplemental Data Set 2) (Medici et al., 2015).
SAG21 (SENESCENCE-ASSOCIATED GENE21), a regulator of
both primary and lateral root development as well as biotic re-
sponses (Salleh et al., 2012), is downregulated in the pericycle
late after N treatment (cluster PN11; Supplemental Data Set 2).

Another line of support that the N responses we see are physi-
ologically relevant and related to molecular changes that precede
regulation of lateral root development comes from the presence of
a NIN1-like putative transcription factor,NLP8, among the core
N responses (clusters CN6 and PN11; Supplemental Data Set
2). NIN is a critical regulator that coordinates cell-type re-
sponses during nodulation in the legume Medicago truncatula
(Vernié et al., 2015). NLP8 has recently been found to regulate
N-responsive seed germination (Yan et al., 2016). We analyzed
T-DNA lines and found that a nlp8 homozygous loss of ex-
pression knockout mutant (nlp8-2 as named in Yan et al., 2016)
has a shorter primary root and fewer lateral roots on replete
levels of nitrate (Figure 2F; Supplemental Data Set 3) but not on
depleted levels of nitrate. This is consistentwith findingsbyYan

et al. (2016) who did not analyze root development but did
observe N-dependent effects on germination.

Cell-Type Preferential Nitrogen Responses Coordinate
Nitrate Influx with Induction of Lateral Root Development
and Remodeling of the Root

Our temporal data uncovered the rapid speed with which the
Arabidopsis transcriptome responds to a new environment. By
examining the cell type preferential N response at the gene and
process level (GO term analysis of gene clusters), we can de-
termine theextent towhichcompartmentalization indifferent cell
types underlies regulation of lateral root development (Figures
2D and 2H). Within the pericycle, WRKY75, a gene that has
previously been shown to affect lateral root numbers (Devaiah and
Raghothama, 2007), is strongly and immediately upregulated after
nitrogen treatment (cluster PN6; Supplemental Data Set 2). Next,
there is N repression of genes regulating “multidimensional cell
growth” (fast cluster PN23, P = 1.22E-4; Supplemental Data Sets
2 and 4). A combination of processes are regulated relating to
modification of the cell wall during lateral root primordial develop-
ment, including genes involved in cytoskeleton reorganization, cell
elongation, andcellwall biogenesis (e.g.,KOBITO,Actin-1,ATFUT5,
CESA1, and Profilin-1; all cluster PN23; Supplemental Data Set 2),
which can all be directly related to lateral root development (Vilches-
Barro and Maizel, 2015) (Figure 2H). Genes involved in “cellular
respiration” (cluster PN25, P = 1.49E-8; Supplemental Data Sets
2 and 4) are induced early by N (at 2 h) and again at 16 h, in a diurnal
fashion. This could provide energy during the lateral root growth
phase. Late N repression of “RNA methylation” (cluster PN4, P =
2.52E-11; Supplemental Data Sets 2 and 4) could be linked to de-
velopment of new lateral root primordial cells since it follows the first
cell division in the pericycle. Also late N-induced are the auxin
biosynthetic genes YUC3 (YUCCA3; PN15; Supplemental Data Set
2) andYUC7 (PN18;SupplementalDataSet 2) and theN-responsive
transcription factorWRKY15 (PN6;SupplementalDataSet 2).Using
mutant analysis, we found that a wrky15 homozygous loss of ex-
pression mutant, relative to the wild type, has a longer primary root
and more lateral roots on deplete N but a similar root system on
replete N (Figure 2G; Supplemental Data Set 3). This confirms that
our analysis is able to identify novel functionally important regulators
of N-responsive lateral root development.
Our time-series data showed that the cortex also behaves dy-

namically in response to nitrogen. There is immediate upregulation of
N-responsive genes including NRT2.1 (CN3; Supplemental Data Set
2), NRT1.1 (CN27; Supplemental Data Set 2), and NRT3.1 (CN27;
Supplemental Data Set 2), and cluster CN28 is overrepresented
for “nitrate transport” processes (P = 3.36E-5; Supplemental
Data Set 4) (Figure 2D). NRT1.1 directs lateral root growth to
patches of high N in soil (Remans et al., 2006) and acts as
a regulator for NRT2.1 (Muños et al., 2004), which itself forms
a N-transporting complex with NRT3.1 (Yong et al., 2010; Kotur
et al., 2012). We also found immediate N regulation of tran-
scriptional regulators including theMYB-like transcription factor
(TF)At1g25550 (clusterCN28; Figure2D;SupplementalDataSet
2). At the same time, the cortex appears to be rapidly remodeled,
possibly to accommodate lateral root emergence from underlying
cell layers. Cytoskeleton reorganization and vesicle trafficking are
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Figure 2. The Nitrogen Response Is Spatially Directional and Highly Cell-Type Specific.

(A) and (C) Numbers and time response partitioning of transcripts regulated by nitrogen in the cortex (A) and pericycle (C).
(B) Euler diagram showing the numbers of genes regulated by nitrogen in the cortex (purple font), pericycle (red font), or in both (core N-responding genes,
blue font). Nitrogen assimilation genes thatwere found to benitrogen regulated in the cortex, pericycle, or both (core) are indicated next to theEuler diagram
sections; the arrows designate direction of regulation and timing (as in Figure 1G); NRT3.1 is differentially regulated in the cortex and pericycle.
(D) Timeline of processes affected by nitrogen, with the log2 expression of select indicative genes shown in nitrogen-treated and untreated cortical cells.
Amongcortex clusters that contain anoverrepresentation of transcripts involved inparticular processes are immediateN responses, includingupregulation
of nitrate responses (cluster CN28), downregulation then recovery of cytoskeleton organization components (cluster CN37), and biphasic upregulation of
cell wall modification genes (cluster CN4). Solid black line, untreated (CU); dashed purple line, N-treated (CN); see Supplemental Data Set 4 for GO
overrepresentation analysis corrected P values and Supplemental Data Set 2 for cluster membership.
(E) N treatment induces lateral root development, as visible if seedlings are maintained in the treatment up to 4 d. Bar = 1 cm.
(F)Perturbationof coreNIN1-likeputative transcription factorNLP8 innlp8-2 (clusterCN6,PN11) leads toseedlingswith shorter rootsspecificallyon replete
nitrogen. Bar = 1 cm.
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immediately N-repressed (Figure 2D); this includes “vesicle coat”
processes (P = 9.67E-3; Supplemental Data Set 4) and two genes
involved in microtubule binding in cluster CN37 (At3g45850 and
At1g65470; Supplemental Data Set 2), suggesting a change in
cell growth processes. PIN-FORMED2, an auxin efflux carrier,
was found to be fast N-induced (in cluster CN36; Supplemental
Data Set 2). There is also an early biphasic (1 and 14 h) induction
of“cellwallmodification,”overrepresented inclusterCN4(P=1.7E-2;
Supplemental Data Sets 2 and 4), here involving N regulation of
expansins (e.g., ATEXPB1; cluster CN39; Supplemental Data Set 2),
together with an increase in cell adhesion processes (Figure 2D).

Network Inference Reveals How Nitrogen Responses in the
Cortex and Pericycle Are Connected via Regulation of
Transcription Factor Activity across Cell Types

To identify candidate upstream regulators of the nitrogen and
lateral root development response and understand how regu-
lated processes are connected, we generated causal tran-
scription networks using the Bayesian network inference tool
GRENITS (Morrissey et al., 2012; Wang et al., 2014) from DE
genes in each experiment. We assessed the accuracy of con-
nection predictions by comparing predicted edges in all net-
works with the interactions found in published data (O’Malley
et al., 2016) (see Methods; Supplemental Data Set 5) and by
asking if the promoters of target genes contained a binding site
motif for the predicted regulatory transcription factor using a test
set of edges between nodes that were common between all
interaction networks in a cell type (see Methods; Supplemental
Data Set 6D). On average, 43% of DE genes were connected in
networks and all temporal patterns of expressionwere represented
(see Supplemental Files 1 to 14 andSupplemental Table 1). To gain
a higher-order “backbone” view of regulatory connections, we
created a view of the network by forming nodes from transcription
factors togetherwiththeir targets (eachbeinga “TFmodule”),based
on the fact that one TF was predicted to regulate another TF and
thus the TF module (Figure 3; Supplemental Files 7 to 14). This
enabled us to query each module to ask if any functions or pro-
cesses were significantly overrepresented. If a module, or con-
nected modules, shared similar overrepresented GO terms, we
shaded them to illustrate potential common function (Figures 3A to
3C). The cortex nitrogen regulatory backbone network contains
several such sets of connectedmodules that are involved in similar
biological processes (Figure3A). These includeabscisic acid (ABA),
chitin, circadian, JA, gibberellin, and ethylene responses. Together,
this suggests that a wide range of processes are controlled by

nitrogenwithin the cortex. There is considerable evidence linking
hormone signaling to N status in the plant. For example, ABA-
insensitive and -deficient mutants are less sensitive to the in-
hibitory effect of high nitrate concentrations on root growth
(Signora et al., 2001).
The finding of a decrease in expression levels in clusters of

genes enriched for JA GO terms agrees with findings that JA
genes are upregulated during nutrient starvation and quickly
downregulated after resupply (Armengaud et al., 2004).Most of
the CN network nitrogen-regulated transcriptional regulators
were in the “immediate” response class (30/45), with a similar
ratio to the number of differentially expressed genes within CN
(Figure 2A). Module size (number of edges) was found to be
largest in the “fast” class (Supplemental Data Set 6). A test of
the ranking of the fast modules when ordered by size indicates
that larger modules significantly correlate with the fast cate-
gory (P < 3.8E-2 using a Monte Carlo simulation for the null
distribution). The largest module in the CN network with
34 targets isPIF7 (fast cluster CN10; Supplemental Data Set 2),
a member of a basic helix-loop-helix-type TF family that has
been linked to transcriptional activation leading to a rapid
growth response (Li et al., 2012).
In the pericycle, the regulatory backbone network is more

sparselyconnected,with somesignificantmodules that couldbe
related to formation of new lateral roots, including N responses,
ribosome biogenesis, organ structure development, and estab-
lishment of cell localization (Figure 3C). As with the CN network, we
again see that the “fast” modules are the largest (P < 3.3E-3 using
a Monte Carlo simulation for the null distribution). The largest reg-
ulatory module in the PN network, with 77 regulatory targets, is
At1g31760 (fast clusterPN5;SupplementalDataSet 2), anunknown
member of the SWIB/MDM2 domain superfamily of chromatin re-
modeling proteins that facilitate transcription activation. The sec-
ond largestmodule isSUVH4 (fast cluster PN5; Supplemental Data
Set 2), a histone methyltransferase involved in the maintenance of
DNAmethylation, suggesting that posttranscriptional modification
couldplay a crucial role in the regulationof the response tonitrogen
in the pericycle. SUVH4 inhibits RAB HOMOLOG1 (late cluster
PN11; Supplemental Data Set 2), a gene involved in the general
response to auxin in roots, with mutants exhibiting defective
gravitropism and auxin physiology as well as fewer lateral roots
(Fortunati et al., 2008).
Although some genes with the same GO terms or molecular

processes are N-responsive in both the cortex and pericycle, the
lack of shared regulatory links between the cortex and pericycle
networks suggests that individual N-regulated transcripts and

Figure 2. (continued).

(G) Perturbation of N-regulated putative transcription factorWRKY15 (cluster PN6) leads to seedlings with longer roots specifically on depleted levels of
nitrogen. Bar = 1 cm. See Supplemental Data Set 3 for phenotype values and t test P values.
(H) Timeline of processes affected by nitrogen, with the log2 expression of select indicative genes shown in nitrogen-treated and untreated pericycle cells.
Among pericycle clusters that contain an overrepresentation of transcripts involved in particular processes are fast N responses including regulation of cell
growth and genes controlling lateral root development (cluster PN23), biphasic upregulation of respiration genes (cluster PN25), and late repression of RNA
methylation (cluster PN1); see Supplemental Data Set 4 corrected P values from GO term overrepresentation analysis and Supplemental Data Set 2 for
cluster membership. Solid black line, untreated (PU); dashed red line, N-treated (PN). Error bars in (D) and (H) indicate SE with average sample size of 2.95
replicates.
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processes in each cell type are different. However, there are
11 N-regulated transcription factor modules that are present in
both cortex and pericycle backbone networks and that thus could
enable coregulation of N responses between cell types (Figure
3C). These are the transcription factors that are regulated in
common and could be suggested to act as “core” nitrogen reg-
ulators. A predominant cortex then pericycle timing of the N re-
sponse is evident when comparing the timing of expression
regulation of these genes; all but two of these 11 transcription
factors are N-regulated in the cortex earlier than in the pericycle.

Downstreamof these core transcription factors, there are putative
targetswith the samemolecular function, basedon theannotation
of the targetgenes.Forexample,NF-YA10regulatesF-boxproteins
in both cortex (At1g62270) and pericycle (At5g39450), and
AtbZIP63 (At5g28770) induces a LRR protein in the cortex
(At3g15410) and represses a LRR kinase in the pericycle
(At1g49100) (Figure 3D; Supplemental Files 2, 5, 13, and 14).
Individually observing these transcription factors regulating
LRR and F-box family genes is not significant on the inferred
CN/PN network (P = 0.056 for LRR and P = 0.085 for F-box;

Figure 3. Nitrogen Response Networks Are Modular in Their Cell-Type Organization, but Connected by Transcription Factor Regulation.

(A) and (B) Inferred causal transcription factor (backbone) network on CN (A) and PN (B) expression data. Node size is scaled by the outdegree of the
module (numberof targets) andcoloredaccording to responsecategory: immediate (red), fast (orange), downstream (yellow), and late (blue) as in Figures
1 and 2 (seeSupplemental Files 1 to 9). The edgesdenote that one TF regulates the other TF (and thus TFmodule), with regulation type (induction; arrow-
headed lines or repression; bar-headed lines) shown by the arrowhead shape. Processes that are overrepresented among genes within module(s) are
highlighted for each network.
(C)Transcription factors that areN-regulated in both cell types (core) havebeen locatedbetween the cortex andpericycle networks;within the solid box,
each pair of nodes is the same transcription factor with the regulation timing and node size indicating interactions in the cortex (left) and pericycle (right).
Directionality of the N response is evident in the earlier response of these in the cortex compared with the pericycle (see colors designating timing, as in
Figure 1G).
(D)TargetsofbZIP63, transcription factor indotted lineboxsection in (C). Expressionprofileswithin timeseriesofa transcription factor (At5g28770,bZIP63)
that iscoreN-induced inboth thecortex (fast) andpericycle (late), andpredicted to regulategenesofsimilar function ineachcell type,LRRproteinAt3g15410
in cortex (immediate) andLRRprotein kinaseAt1g49100 inpericycle (late). Solid line, untreated (CU/PU); dashed line,N-treated (CN/PN); error bars indicate
SE with average sample size of 2.95 replicates.
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permutation test). However, observing both in the CN/PN
networks is significant at P = 0.0043 (permutation test).

Therefore, our time-series analysis has revealed that a combi-
nation of variation in the timing, direction and location of core
common responses can potentially regulate and enable cell type
preferential outputs. To enable this common signaling, it is pos-
sible that transcription factors move between cell types (as SHR/
SCR protein moves from the stele to the endodermis; Nakajima
etal., 2001), but it is alsopossible thatTF regulation is independent
in both cell types.

Arabidopsis Biotic Responses Can Be Partitioned into
Defense Responses in the Cortex, and Subsequent
Developmental Responses in the Pericycle

Having discovered that thecortex andpericycle coordinate changes
in responseto theabioticchangeofnitrogen influx,weaskedwhether
coordination was also evident for biotic responses that alter root
architecture.WeanalyzedArabidopsisresponsestotheM.truncatula
(legume) N-fixing bacterium symbiont Sinorhizobium meliloti,
a biotic stress that we discovered can alter root architec-
ture. S. meliloti is not a symbiont of Arabidopsis, but S. meliloti-
treated seedlings have more lateral roots (P = 1.09E-2), although
these are shorter (P = 1.77E-2) (Figures 4E to 4G; see data in
Supplemental Data Set 3), indicating a possible stress/immunity
response. We performed a time-series analysis of S. meliloti
treatment and identified2546 transcripts that respond specifically
in cortex, 3350 that respond specifically in pericycle, and 202 that
respond in both cell types (Figure 4A). CR transcripts were
clustered into 32 clusters and PR transcripts into 25 clusters
(Supplemental Figure 4). As with the nitrogen responses, we used
network inference to construct networks to identify transcrip-
tion factors that are associated with the regulation of rhizobia
responses (Supplemental Files 3 and 6).

We found putative defense responses in the cortex to be
immediately activated then maintained, with three immediate/
fast regulated clusters enriched for genes annotated as chitin
responses (Figure 4B, clusters CN19, 28, and 30; Supplemental
Data Set 2; see P values in Supplemental Data Set 4). Rhizobia
contain microbe-associated molecular patterns (MAMPs) such
as peptidoglycan that activate innate immunity via a conserved
LysM signaling pathway that also responds to the MAMP chitin
(Gust, 2015). Among the “chitin-responsive” genes are several
cortex-specific rhizobial-responsive TFs including ERF11
(cluster CR19, Supplemental Data Set 2); WRKY48 (cluster
CR30, Supplemental Data Set 2); a known repressor of plant
basal defense genes (Xing et al., 2008); and MYB44 (cluster
CR30, Supplemental Data Set 2), a positive regulator of
SA-associated defense responses and a negative regulator of
JA-associateddefense response (ShimandChoi, 2013; Shimet al.,
2013). Within the inferred cortex rhizobia-responsive regulatory
network (Supplemental File 9), highly connected predicted defense
modules included WRKY3 (cluster CR7; Supplemental Data Set
2) and WRKY28 (cluster CR28; Supplemental Data Set 2), with
CESA1 (cluster CR26; Supplemental Data Set 2), a cellulose
synthase critical for cell wall formation (Burn et al., 2002) pre-
dicted to control developmental responses (see Supplemental
File 9). Modification of the responses of rhizobia-responsive

genes (e.g., via mutation) could alter basal defense responses to
bacteria such as rhizobia, as already seen for responses to patho-
genic microbes. For example, wrky48 mutants exhibit stronger de-
fense responses (Xing et al., 2008) andmyb44mutants exhibit higher
pathogen resistanceandarealsomoresensitive toJA-mediated root
growth inhibition (Shim et al., 2013).
Later in the cortex there is upregulation of stress signaling,

including “response to jasmonic acid stimulus” (cluster CR10, P =
4.27E-4; Supplemental DataSet 2), and induction of genes known
to be involved in remobilizing nitrogen (e.g., NAXT1, cluster CR26;
Figure 4B; Supplemental Data Set 2), which could indicate re-
partitioning of resources. Similar to in the nitrogen response, cell
wall development is regulated, e.g., the methyltransferase GXMT
(cluster CR29; Supplemental Data Set 2) that plays a role in the
production of cell wall xylan (Lee et al., 2012), CESA3 (cluster
CR27; Supplemental Data Set 2), and CSI1 (cluster CR28;
Supplemental Data Set 2), which are both involved in cellulose
production and for which mutation affects root development
(Daras et al., 2009; Gu et al., 2010). “Plant-type cell wall modifi-
cation” related transcripts are also regulated in the pericycle, e.g.,
the pectin methylesterase inhibitor At2g10970 (cluster PR6, P =
8.3E-4; Figure 4B; Supplemental Data Sets 2 and 4), which could
be related to the induction of lateral root development or cell wall
fortification as part of immunity.
In summary, we found that S. meliloti induces defense re-

sponses at early time points (immediate/fast) and stress signaling
(late). In addition, other processes including cell wall modification
and nitrate remobilization are rhizobia responsive. We hypothe-
size that combined, these lead to effects on root architecture as
a form of stress adaptation (Figures 4C to 4G).

Cell-Type Identity and Cell-Type Responses to
the Environment

Around half of the transcripts that are differentially expressed in
response toanabiotic (nitrogen) or biotic (S.meliloti ) treatment are
also differentially expressed in untreated cells over time. This
suggests that many genes that respond to the environment are
dynamically expressed within cell types, rather than only induced
or repressed upon treatment. Cell types are known to have varied
responses to the environment, at least in part due to the different
patterns of gene expression within those cell types (Gifford et al.,
2008). At the same time, just as it is well known that plant root cell
position confers cell fate (Kidner et al., 2000), cell “state,”meaning
the functions and responses of a cell, are likely to be influenced or
determined by signals fromoutside the environment of a cell type.
To understand the extent to which cell-type identity determines
the scale of cell-type responses to the environment (cell-type
state), we evaluated the expression of 194 cortical and 104 peri-
cycle transcripts previously defined as cell-type-specific enriched
genes (CTSEs) (Birnbaum and Kussell, 2011; Bargmann et al.,
2013) in our data. We identified CTSEs appropriate to each cell
typeand found that theywere enriched in thecortex andpericycle,
validating the cell-type identity of our sorted cells (Figure 5A).
However, when analyzing CTSE gene expression, we also found
that CTSEs were dynamically expressed, either changing within
untreated time series or in response to nitrogen and/or rhizobia
(Figures5Band5C;SupplementalDataSet2).Thissuggested that
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Figure 4. Cortical and Pericycle Cells Partition Defense and Developmental Responses to Rhizobia.

(A) Numbers and time response partitioning of transcripts regulated by nitrogen in the cortex and pericycle.
(B) Timeline of processes affected by rhizobia, with the log2 expression of select indicative genes shown in rhizobia-inoculated and untreated cortical cells
(purple lines) and pericycle cells (red lines). Among cortex clusters that contain an overrepresentation of transcripts involved in particular processes (GO
terms) is an immediate upregulation of chitin responses, fast induction of defense responses, fast repression of lipid transport, late upregulation of stress
signaling, and nitrate remobilization. Among pericycle clusters there is downstreammodification of cell wall formation; see Supplemental Data Set 4 for GO
overrepresentationanalysiscorrectedPvaluesandSupplementalDataSet2 forclustermembership.Dashedblack line, untreated (CU/PU); solidpurple/red
line, rhizobia-treated (CR/PR); error bars indicate SE with average sample size of 2.95 replicates.
(C) Seedlings grown on nitrate-deplete conditions.
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the CTSEs were indeed cell-type-specific enriched but that they
were also responsive to the environment.

To determine what controls the expression of the CTSEs that
respond to the environment, wequeried thePNcausative network
for N-responsive pericycle CTSEs (Figure 5E) and the CR network
for S. meliloti-responsive cortex CTSEs (Figure 5D). Two SCL
transcription factors are predicted to repress the pericycle re-
sponse of the BR-6-ox1 N-responsive gene, potentially re-
pressing brassinosteroid synthesis under replete N (Figure 5E).
Four transcriptional regulatorswere found tocoregulateagroupof
three cortex rhizobia-responsive CTSEs and the expression of
three out of four of these regulators was found to be similarly
enriched in the cortex (Figure 5F). Overall, we found that re-
sponsiveness to the environment is enabled by the transcriptome
of a cell type and that this response also contributes to the state of
that cell type. Using network analysis, we were able to identify
novel cell-type-enriched responsive genes that could control
responses of particular cell types.

Individual Genes Are Expressed with a High Degree of
Temporal and Spatial Specificity, yet the Regulation of
Processes Has a High Degree of Overlap

Althoughmost differentially expressed transcripts were DE in one
cell type and treatment only (Figure 6), our gene and network
analysis suggests that similar processes are regulated across
multiple conditions. To confirm this, we determined the degree of
functional overlap between lists of differentially expressed tran-
scripts.Weassigned each transcript to its deepest nonoverlapping
path molecular function GO term (see Methods). There is a signif-
icantly higher proportion of transcripts that are unique to a cell type
and treatment than the proportion of unique GO terms (P < 10E-
116), while the proportion of GO terms shared among all cell types
and treatments is significantly higher than the proportion of shared
transcripts (P<10E-84) (z-tests) (Figures6Aand6B); transcript level
overlap is low (62%DE in a single cell type and treatment; 1%DE in
all cell types and treatments) compared with process level
overlap (31%DE in a single cell type and treatment; 23%DE in all
cell types and treatments). We term this mechanism “response
nonredundancy,” whereby individual transcripts within gene
functional groups are expressed with a very high degree of
temporal and spatial specificity, yet biological processes are
commonly regulated.

Although most (84%) N responses are cell-type preferential,
those that are shared between cell types (core N responses)
couldshed lightonthecoordinationof theNresponse.Weanalyzed
the timingof the responsesof the450coreN-responsivegenes.We

found that 24% (108) of these transcripts display invariant ex-
pression in cortex and pericycle. Assessing the 342 genes with
timing directionality, a significantly larger number of the core
N-responsive transcripts (295) are first regulated in the cortex, then
in thepericycle (Figure6C;P<10E-20,binomial test). This suggests
that N responses occur first in outer root cell types, including the
cortex, before then occurring in inner cell types including the
pericycle (Figure 6C). Previous work suggests that nitrate is rapidly
transported throughout the root to regulate core N responses, with
organic assimilated N typically playing a role in regulating cell-type
responses including lateral root development (Gifford et al., 2008).
The signal to regulate tissue directional responses could thus be
assimilated N or a molecule downstream. This would likely involve
signaling across the endodermis, also an N-responsive cell type
(Gifford et al., 2008).
The N response of 135 of the 295 cortex-then-pericycle tran-

scripts are in the same regulation direction (induced or repressed;
see Methods). This timing of gene regulation suggests that an
N-induced signal regulates gene expression in the cortex, before
passing through and inducing a N-mediated response in the
pericycle. This category is overrepresented for genes involved in
responses to abiotic stimulus (P = 0.001), which includes many
N- andABA-responsive genes (Figure6C;SupplementalDataSet 4).
Alsopresent is the bZIP family transcription factor TGA1,whichhas
been demonstrated to act downstream of NRT1.1 and has been
implicated in the regulation of NRT2.1 and NRT2.2 (Alvarez et al.,
2014). The remaining 160/295 genes whose N-response occurs
later in the pericycle are regulated in opposite directions in cortex
and pericycle. This includes two genes linked to auxin responses:
EXTENSIN (clustersCN38andPN23; Supplemental DataSet 2), an
auxin-responsive member of environment-driven cell wall modi-
fying enzymes (Eklöf and Brumer, 2010); and ZINC INDUCED
FACILITATOR-LIKE1 (clusters CN6 and PN11; Supplemental Data
Set2) that hasbeenshown tomodulateauxin transport (Remyetal.,
2013). These two genes could be part of auxin-responsive lateral
root regulation, responding to auxin flow from the vasculature.
Systemic,non-cell-autonomoussignalingoramixofbothcould

potentially control 108 of the 450 common DE transcripts, since
they are regulated at the same time in both cell types (Figure 6C).
Seventy-three of these transcripts have identical expression, in-
cluding bZIP1 that is immediately N-induced in both cortex and
pericycle (clustersCN31andPN6;SupplementalDataSet2), and the
keyammonia transporterAMT1;1 (AMMONIUMTRANSPORTER1;1)
that is N-downregulated fast in both cell types (fast clusters
CN10 and PN24; Supplemental Data Set 2). Our finding that
bZIP1 plays a role in rapid and early N signaling is supported by
studies of bZIP1 perturbation in studies of isolated root cells

Figure 4. (continued).

(D)Schematic timeline ofgeneexpressionchangesafter rhizobial inoculation, preceding rootdevelopmental changes (morebut shorter lateral roots); labels
based on summary of GO terms presented in (B). Solid arrow represents time series of gene expression analysis, and dotted line represents time up to
phenotypic analysis images shown in (E) and (F).
(E) Seedlings 4 d after rhizobial inoculation.
(F) Seedlings 4 d after mock inoculation. Bars in (C), (E), and (F) = 1 cm.
(G)Average (n=16) lateral root length (left) andnumberof lateral roots (right) of seedlings4dafter rhizobialormock inoculation; error bars=SE; *t testP<0.05.
See Supplemental Data Set 3 for phenotype values and t test P values.
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(Para et al., 2014). The remaining 47/450 commonDE transcripts
are regulated first in the pericycle and second in the cortex,
which could indicate cell type independence rather than core
responses (Figure 6C).
We observed widespread response nonredundancy regula-

tion of genes involved in the same gene ontology molecular
functions (Figures 6A and 6B), and it is also evident when as-
sessing the regulation of gene family members (Figure 6D). We
analyzed the regulation of 55 gene families and found that 47/55
gene families hadmembers differentially expressed in each time
series. The remaining eight had family members differentially
expressed in at least three time series, but these had fewer
members (an average of eight DE transcripts rather than an
average of 35 DE transcripts; Supplemental Data Set 8). As an
example of the typical widespread differential expression within
gene families, we found that 29/51 transcripts from the gluta-
thione S-transferase (GST) family are regulated in one or more
time series and show diverse patterns of gene regulation (Figure
6D; Supplemental Data Set 7). Although variation in expression
patterns between members of a gene family could reflect the
inherent range of functions, it is also likely that regulation of the
same molecular function in a spatially and temporally diverse
fashion will alter the outcome of that molecular activity. This rep-
resents the same phenomenon as discussed earlier for common
nitrogen-responsive network modules: These were found to
regulate the same gene families but control different individual
members of these gene families, specific to response and location
(Figure 3C). Together, this shows how variations in temporal and
spatial regulation in gene expression can enable specificity of re-
sponses and highlights the importance of large gene families for
enabling complex responses to the environment.

DISCUSSION

Our novel time-series data have enabled us to show that envi-
ronmental responses exhibit a very high degree of temporal and
tissue specificity. By tracking the expression of transcripts over
time, we were able to reconstruct a timeline of regulation of
molecular processes that link short-term and long-term conse-
quential developmental changes in the root system.We found that
gene expression in the cortex and pericycle of the root is highly
dynamic over day/night cycles, with thousands of genes changing
in a wide range of different temporal patterns.Many of these genes
also respond to the environment, potentially enabling both

Figure 5. Cell-Type-Specific Enriched Genes Are Dynamic and Re-
sponsive to the Environment.

(A)Heatmapofaverageexpressionwithineach timeseriesofCTSEs for the
cortex and pericycle. The heatmap is ordered by hierarchical clustering on
distance, within rows of transcript data and between (see dendrogram
showing that the CTSE expression is sufficient to cluster according to cell
type). Color denotes the average expression of each transcript across the
time series and is relative to the average expression of all genes in all time
series. Yellow, low level of expression; blue, high level of expression.
(B) and (C) Regulation of the 194 cortex CTSEs (B) and 104 pericycle
CTSEs (C) based on their differential expression within time series;
“enriched,” no differential expression within a time series; “dynamic,”

differential expression within the untreated (U) time series; “responsive,”
differential expression within the nitrogen-treated (N) or rhizobia-treated
(R) time series; purple shades, differential expression within cortex; red
shades, differential expression within the pericycle.
(D) and (E) Network inference-predicted upstream regulators of enriched
and responsiveCTSEs in the cortex (D)andpericycle (E); diamonds, genes
annotated as transcription factors, circles, genes with non-transcription
factor functions. Color denotes timeof first significant differential expression
(as in Figure 1G).
(F) Novel CTSEs identified from network inference. Heat map of average
expression in response to each treatment and in each cell type in (D) and
(E); key as in (A).
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Figure 6. Gene Family Nonredundancy Enables Specialization of Cell-Type Activity, but with Shared Functional Responses.

(A) Euler diagram showing the number of transcripts differentially expressed in cortical and pericycle cells, either in response to nitrogen or rhizobial
treatment.
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temporal- and spatial-specific responses. We hypothesize an
interplay between cell-type identity and how these cell types
respond to their environment, whereby responses are pro-
grammed by the cell type, but in turn reinforce the unique
functions of those cell types (the cell type is programmed by its
responses). The validity of this hypothesis could be investigated
by expressing genes that are typically responsive in one cell type
(e.g., pericycle), under the control of a promoter typically expressed
in a different cell type (e.g., the promoter of a cortex-specific
gene) and/or typically responsive in a different cell type (e.g., the
promoter of a cortex-responsivegene). Such “promoter swapping”
to compare responses would help to test our hypotheses re-
garding the connections between cell-type identity and cell-type
responses.

We identified transcription factormodules that control modules
of processes and also identified a novel root architecture role for
NLP8 (Yan et al., 2016) and a new root architecture-regulating
transcription factor, WRKY15, the functions of which are mod-
erated byNabundance. Themolecular regulation thatweuncover
underlies lateral root developmental responses under different
environments, one component of root plasticity. The time series
also enabled us to identify novel directionality in root responses
between tissue layers to nitrogen.

Analysis of differentially expressed genes shows that there is
a high level of specificity in the regulation of genes in response to
treatment and within each cell type. Despite the fact that thou-
sands of genes respond to treatments, each cell type before and
after treatment still clusters together, suggesting that cell type
identity ismaintainedduringtheseresponses.CTSEgenes(Birnbaum
andKussell, 2011; Bargmann et al., 2013) are expressed in particular
cell types but their expression is not static: They are highly re-
sponsive to the environment. This implies that cell type re-
sponses are controlled by the expressed transcriptome, but also
that transcript responses contribute to modulating cell-type
state. Within this analysis we identified new enriched genes
using differential expression and network analysis. In our net-
works, we also found closely connected modules regulating
similar processes, akin to “molecular networkmachines,” a term
for identifying common control of molecular processes, evident
within network analysis (Gunsalus et al., 2005).

Our analysis revealed a novel level of coordination between
cell types, since several of the biological processes that are
regulated by nitrogen treatment or rhizobia inoculation in cor-
tical and pericycle cells were the same, but different genes are

responsible for the responses in each cell type. For example,
common transcriptional modules respond in both pericycle and
cortex, and regulate similar gene families, but differentmembers
of these families act in each cell type and at different timesduring
environmental responses. This suggests much less functional
redundancy in gene families than is typically considered and that
this is obscured at the whole-root level. This is an important
finding since it shows that the scale and scope of gene activity is
not simply the molecular function of a gene, but a consequence
of its spatial location, timing of expression, and responsiveness
to environmental conditions. It also helps to provide an expla-
nation for the typically higher hit rate in identifying phenotypes in
regulators identified in systems biology data set analysis using
a reverse genetic approach (Ransbotyn et al., 2015); a higher
level specificity in the measurement of expression levels, reg-
ulation, and locationofgenesmeans that investigatorscandetermine
more precise and accurate predictions of when perturbation of
function might lead to a measurable phenotype.
Overall, these findings identify novel mechanisms of environ-

mental responses and highlight the need to examine the ex-
pression of individual genes at the temporal and spatial levels to
better understand how developmental plasticity is controlled and
enabled in plants.

METHODS

Plant Lines and Plant Growth

Arabidopsis thaliana GFP-expressing lines in the Col-0 background were
selected to mark the cortex (ProCo2:YFPH2B line; Heidstra et al., 2004) or
pericycle (E3754 enhancer trap GFP line; Gifford et al., 2008). To examine
At2g43500 (NLP8) perturbation, a heterozygous T-DNA line in the start of
the open reading frame (nlp8-2, SALK_140298) was obtained from the
ABRCstockcenter (Scholl et al., 2000; nomenclature as inYanet al., 2016).
CS75037-4-7,harboringaT-DNA inWRKY15 (At2g23320),was isolatedas
part of a mutant screen of pools of T-DNA lines (CS76052) obtained from
the ABRC (Scholl et al., 2000); T-DNA location (promoter) was determined
using TAIL-PCR (Liu et al., 1995).

For GFP-expressing seeds,;400 per plate were surface-sterilized and
sown on 0.7-cm strips of autoclave-sterilized brown growth pouch paper
(CYG germination pouch) on 0.8% agar plates containing a basal 13
Murashige and Skoog growth medium (Sigma-Aldrich M0529), supple-
mented with sucrose (30mM), CaCl2 (1.5 mM), MgSO4 (0.75mM), KH2PO4

(0.625 mM), and 0.3 mM NH4NO3, pH 5.7. Plates were sealed with mi-
croporous tape, seeds stratified for 2 d at 4°C in the dark, and then plates
placed in opaque (black polythene) covers (Bagman of Cantley) and grown

Figure 6. (continued).

(B)Euler diagram showing the number ofmolecular functionGO terms fromnonoverlapping paths representedwithin differentially expressed transcripts in
(A) and illustrating the greater overlap at the function level compared with at the transcript level. The percentage of transcripts DE in one/two/three/all cell
types/treatments is 62:33:4:1, respectively, and the percentage of GO terms DE in one/two/three/all cell types/treatments is 31:29:17:23, respectively.
(C)Transcripts that areN-responsive inboth thecortexandpericycle (coreN responses) canbedistinguishedaccording to the timingof their regulation. The
predominant pattern is cortex then pericycle regulation (295 transcripts), then regulated in both cell types at the same time (108 transcripts), followed by
pericycle then cortex regulation (47 transcripts). Overrepresented processes or genes of note are indicated below indicative expression patterns for each
response category; see Supplemental Data Set 4 for GO overrepresentation analysis corrected P values.
(D) Euler diagram showing the number of GSTs significantly differentially expressed in the cortex or pericycle in response to nitrogen or rhizobial treatment
(Supplemental Data Set 7), with the expression of selected transcripts across response categories shown to illustrate the diversity of responses within the
same gene family. Log2-normalized expression values of all transcripts are shown on the same axes for comparative purposes; error bars indicate SE with
average sample size of 2.95 replicates; colored boxes denote response time category as in Figure 1G; see key.
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in a Sanyo growth chamber (MLR-351H; Sanyo, E&EEurope) with a 16/8-h
photoperiod at 50 mmol m22 s21 and constant 22°C. For T-DNA lines and
their wild-type siblings/Col-0, approximately eight seeds were surface-
sterilized and sown directly, side-by-side on deplete N agar plates (as
above)or repleteNagarplates (asabovebutwith5mMNH4NO3) for 12d,or
seedlings were treated with replete N or rhizobia as above at 9 d, then
imaged 4 d after treatment.

Plant Treatments

After 9d in thegrowthchamber, treatmentswereperformedatdawn (= time
0). To prepare the Sinorhizobium meliloti solution, 50 mL of TY/Ca2+

medium (5 g/L Bacto-tryptone, 3 g/L yeast extract, and 6 mM CaCl2)
(Journet et al., 2001) was inoculated with S. meliloti and incubated for 26 h
at 28°C and 220 rpm to an OD600 of 1 to 2. Cells were then harvested by
centrifugation (4000 rpm, 10 min, 4°C) and resuspended in 40 mL water to
a finalOD600 of 0.01 (Ding et al., 2008). To carry out the treatments, seedling
strips were removed from plates, briefly immersed (10 s) in liquid deplete N
medium (as plates but with no agar), placed on a fresh plate (untreated or
briefly immersed in liquid replete Nmedium, as plates but with no agar and
with 5 mM NH4NO3), and placed on a fresh 5 mM NH4NO3 plate (N
treatment), or briefly immersed (10 s) in a solution of S. meliloti and placed
on a fresh deplete NH4NO3 plate. Plates were then resealed with micro-
porous tape, replaced in opaque (black polythene) covers, and returned to
the Sanyo growth chamber. The same procedure was used to treat Col-0
plants for phenotypic analysis (Figures 2E, 4C, and 4E to 4G), but after
growth of;8 seedlings per agar plate for visualization purposes. At hourly
time points 0 (immediately before transfer, at dawn), 1, 2, 4, 6, 8, 10, 12, 14,
16, 20, 24, 36, and 48 h after transfer, whole roots were harvested for
protoplast generation and FACS by cutting roots just below the growth
pouch paper strip. The whole experiment was performed in at least bi-
ological triplicate with seedlings for each biological replicate grown in-
dependently (in a nonoverlapping time period). Each replicate sample (for
each timepoint in each timeseries) consistedof thepooledharvested roots
from;200GFP-expressing seedlings (destructive sampling) grown on the
same plate. Each replicate sample was considered independently within
subsequent analysis.

Protoplast Generation and FACS

Harvested roots were bundled and cut into lengths of ;2 to 3 mm into
a 70-mmcell strainer in a small Petri dish containing protoplast-generating
solution (600 mMmannitol, 2 mMMES hydrate, 10 mM KCl, 2 mM CaCl2,
2 mM MgCl2, and 0.1% BSA, pH brought to 5.7 with Tris HCl) with 1.5%
cellulase R-10 (Phytotechlab), 1.2% cellulase RS (Sigma-Aldrich), 0.2%
macerozyme R-10 (Phytotechlab), and 0.12% pectinase (Phytotechlab).
The Petri dishes were placed on an orbital shaker at 200 rpm for 1 h then
cells harvested by centrifugation (5 min at 1200 rpm, room temperature),
resuspended in 500 mL protoplast-generating solution lacking enzymes,
then filtered through a 40-mm cell strainer to break up large clumps of
protoplasts.

Protoplasts were sorted using a BD Influx cell sorter (BD Biosciences)
fitted with a 100-mmnozzle, using FACS-Flow (BD Biosciences) as sheath
fluid. Pressure was maintained at 20 p.s.i. (sheath) and 21 to 21.5 p.s.i.
(sample), and drop frequency was set to 39.5 kHZ, which yielded an event
rate of <4000; these are optimal settings on a BD influx cell sorter for the
type of protoplasts (Gifford et al., 2008). To optimize alignment of relevant
lasers and detectors, Calibrite Beads (BD Biosciences) suspended in
FACS-Flow were used, and to optimize sort settings, BD Accudrop
Fluorescent Beads (BD Biosciences) suspended in FACS-Flow were used.
GFP-positive protoplasts were identified using a 488-nm argon laser and
plotting the output from the 580/30 band-pass filter (orange) versus the 530/
40 band-pass filter (green). GFP/YFP-positive protoplasts were in the high
530/low 580 population, with non-GFP protoplasts in the low 530/low

580 population and dead/dying protoplasts and debris in the high
580 population (as inGrønlund et al., 2012). At least 10,000GFP-positive
protoplasts were sorted using methods shown previously to preserve
endogenous gene expression levels (Birnbaum et al., 2003; Gifford
et al., 2008). Sorted protoplasts were directly sorted into Qiagen RLT
lysis buffer containing 1% (v:v) b-mercaptoethanol, mixed, and im-
mediately frozen at –80°C for RNA extraction (methods according to
Gifford et al., 2008).

RNA Isolation, qPCR, and Microarray Hybridization

RNAwas extracted fromsorted cells using theQiagenRNeasyRNAkit and
DNase treatment using the Qiagen DNase kit. The quantity and quality of
RNA were checked with a Bioanalyzer 2100 RNA 6000 Pico Total RNA Kit
(Agilent Technologies). cDNAwas amplified from RNA using 1/2 reactions
of theOvationPicoWTASystemV2kit (NuGENTechnologies) according to
the “quick” protocol. Post-amplification purification of cDNA was per-
formed using the QIAquick PCR purification kit (Qiagen). Then, 0.5 mg
NuGEN-amplified cDNA was labeled using the NimbleGen One-Color Cy3
labeling kit, and 4 mg of this was hybridized using the GeneChip hybridization
kit on NimbleGen Arabidopsis 12 3 135k probe microarrays designed for
the full TAIR-10 annotation Arabidopsis genome (design OID 37507; see
GPL18735andGSE91379;RocheAppliedScience).OIDhas131,524probes
designed against 27,143 genes in the Arabidopsis genome; 3675 genes had
multiple probes along their length to determine expression of 31,524 gene
transcripts (an average of 2.19 and up to four gene models each for these
genes). Arrays were imaged using an MS200 microarray scanner using only
the 480-nm laser using the autogain feature of the NimbleScan software, all
according to the manufacturer’s instructions. Grids were aligned automati-
cally thenmanuallyverified.Rawprobe(xys)andgene levelunnormalizeddata
were obtained using NimbleScan.

ForqPCRanalysisofgeneexpression inT-DNAandwild-type lines, root
samples (consisting of;16 roots per sample) were harvested at the end of
the growth period on plates; three independent biological replicate sam-
pleswere harvested. RNAwas extracted using theQiagenRNeasyRNA kit
and used for cDNA synthesis (Primer Design). qPCRwas performed using
SYBR Green dye (Sigma-Aldrich) on a LightCycler 480 system (Roche)
(primer sequences in Supplemental Data Set 3D). As a control, we used
polyubiquitin UBQ10 using the geNorm REF gene kit (Primer Design) as
described (Mestdagh et al., 2009).

Normalization and Quality Assessment of Microarray Data

The xys (NimbleGen) files, which store array coordinates and observed in-
tensities, were importedwith theBioconductor “oligo” package (Carvalho and
Irizarry,2010)using theannotationpackagepd.120110.athal.mg.expr installed
through the pdInfoBuilder package (Falcon and Carvalho, 2013). The RMA
algorithm (Irizarry et al., 2003), which performs background subtraction,
quantile normalization, and summarization via median polish, was applied to
the raw data of expression arrays to obtain the log2-normalized gene ex-
pression levels. All arrays for pericycle and cortex were normalized together,
and arrays were assessed for quality implemented by the Bioconductor
package arrayQualityMetrics (Kauffmann et al., 2009). An object of class
ExpressionSet, which was generated by the oligo package, was inputted
to the arrayQualityMetrics package and then a utility report created. To
generate a robust total data set, we removed outlier arrays based on the
between array distances (using the sum of distances Sa as the quality
metric; with a cutoff of 337), box plot (using Kolmogorov-Smirnov sta-
tistic Ka as the quality metric; with a cutoff of 0.063), and MA plot (using
Hoeffding’s statistic Da as the quality metric; with a cutoff of 0.15). This
resulted in a final set containing 236 comparable quality arrays (110 for
cortex and126 forpericycle) over the6 treatmentsand14 timepoints, i.e.,
an average replication of 2.95 per time point with at least two replicates
per time point.
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Confirmation of Time-Series Data Robustness and Data Processing

The expression of routinely used housekeeping genes (CBP20, Actin-2/8,
UBC, YLS8, TUB4, and GAPDH, EF-1a) was analyzed. All the house-
keeping genes had constant expression and were invariant to treatment/
tissue type, changing less than 1-fold in either time series (Supplemental
Figure 5). A full expression data set for all three of our time series is
available to view at the Arabidopsis eFP browser: http://bar.utoronto.ca/
efp_arabidopsis/cgi-bin/efpWeb.cgi?dataSource=Lateral_Root_Initiation
Initiation (Winter et al., 2007). For analysis of differential expression, the
variation between gene model=transcript expression was investigated by
examining the 1547 transcripts, representing 711 genes that were de-
termined to be differentially expressed within (using the software BATS
[Bayesian Analysis of Time Series]; see below) one or more time series
presented in this article (14% of all DE transcripts). Expression was de-
termined to be identical between transcripts for 34%, similar for 36%, and
different for 30% (Supplemental Data Set 9). Identical expression could
indicate redundancy between transcript expression levels, with divergence
indicative of functional variation, to be explored in future work. Each
transcript was considered separately for the purpose of analyzing ex-
pression patterns (in clustering) and for comparing the total size of tran-
scriptional response. However, for analysis of functional categories/GO
terms represented in responses, and for network inference, analysis was
performed at the gene level, to avoid a bias introduced by including the
same gene more than once. For network inference, this meant that the
average expression valueof a transcript setwas used;weconsidered this
to be justified since 70% of transcripts showed similar or identical DE.

For analysis of gene families, we determined which transcripts belonged
towhich gene families according to the sameTAIR gene annotation as used
for expression array analysis (file: TAIR_gene_families_sep_29_09_update),
and we analyzed gene families with more than 20 members.

Two-tailed t tests assuming equal variance were used to compare trait
values for wild-type and mutant seedling roots and trait values for Col-0
with treatment compared with mock treatment.

Determination and Clustering of DE Genes

DE genes within each time series were obtained using the software BATS
(Angelini et al., 2008) and determined to be robust using the independent
methodofgradient analysis (Breezeet al., 2011). TheBATS inputfile for each
time series contains the rescaled log2 gene expression values such that the
vector of log2 expression values of each gene had mean zero and variance
one. Genes were considered to be DE if their Bayes factors in the BATS
output file were less than a threshold (log2 Bayes factor >3), which was
determined by the histogram of log10 of Bayes factors and the regression
plots of gene expression levels fromBATS.DEgenes between treatments in
eachcell typewereobtainedusingGaussianprocessmodeling implemented
in the software GP2S (Stegle et al., 2010). In the GP2S input file, the log2

expression levelsofeachgene for the twotimeserieswererescaledsuch that
their mean was zero and their variance was one. GP2S assigned each gene
a Bayes factor that equals the difference between the likelihood of the ex-
pression level of a gene in two treatments being sampled from different
Gaussian processes and that from the same Gaussian process.

Immediate responding genes were defined as those with |x1-x0| > f1 x
sd(xt) for gene transcription time series xt, i.e., the absolute value of the
change in the first time point being larger than f1 times the time series SD.
Furthermore, fastanddownstream respondinggenesweredefinedasgenes
thatwerenot immediate respondersbuthadadramaticchangewithin2or6h
of treatment (sd(x0..2) >f2 x sd(xt), sd(x0..6) >f6 x sd(xt)). The remaining genes
not in any of these three classes were designated late. Clusters were further
defined as upregulated or downregulated if their expression increased or
decreased at this point of differential expression. The thresholdsf1, f2, and
f6 were chosen and then clusters were visually inspected to confirm sep-
aration of the clusters into the appropriate classes.

Hierarchical clustering of the differentially expressed genes was per-
formed using SplineCluster (Heard et al., 2006). The mean expression
levels of biological replicatesof aDEgeneat each timepoint in a timeseries
was used as input. A reallocation function was implemented to reallocate
outliers of each cluster into other more appropriate clusters at each ag-
glomerative step. A prior precision value was finally determined after trying
different values and comparing their effects on clusters (Supplemental
Figure 6). SE of the mean was plotted on all graphs of gene expression.

Statistical Analysis of GO Terms

GOrilla (Eden et al., 2009)with hypergeometric test correction for clusters
or BioMaps (Katari et al., 2010) with Fisher exact test with FDR correction
was used to determine which GO categories are statistically over-
represented for groups of DE genes. The whole TAIR-10 annotated
Arabidopsis genomewas used as the reference set. To consider a cluster
to have a significantly overrepresentedGO term,we considered clusters/
groupswith$15geneswith theGO term in$3genes and a correctedP#

0.05 (results are tabulated in Supplemental Data Set 4; generic GO terms
were removed from the table during analysis). To assess the degree of
functional overlap between lists of differentially expressed genes, we ob-
tainedGOtermsforeverygenefromtheGOwebsite forArabidopsisusingthe
TAIR10 annotation (Berardini et al., 2004). Since every gene could be as-
sociated with more than one function, we assigned as few GO terms as
possible for a gene using the R package Go.db and by removing terms that
could be associated via a directed acyclic graph as an ancestor to other GO
termsassigned for thesamegene(Carlson,2016).Thisapproachdetermined
GO terms from nonoverlapping paths that end with a GO term, which is
deepest in its respective path. Sometimes there were GO terms with less
significant branching but even these were considered unique for that par-
ticular gene. As a final step, we sorted the GO terms across a particular
treatment condition in order to determine unique molecular functions.

Gene Regulatory Network Inference and Analysis

The Bioconductor package GRENITS (Morrissey et al., 2012; Wang
et al., 2014) was used for gene regulatory network inference using the
mean expression levels of biological replicates (as outlined above) for
eachDEgeneat each timepoint from0 to 16h.Weassigned 2460genes
(2946 transcripts) to be putative regulators due to known or putative
transcription factor activity based on data from the NCBI Conserved
Domains database indicating the presence of conserved protein do-
mains indicative of DNA binding combined with gene annotations (GO
and TAIR), indicative of regulatory effect (Supplemental Data Set 2).
Genes that were DE within time series (as calculated using BATS) were
used as input, then genes DE when comparing treatment and untreated
control samples (GP2S)were identifiedwithin thosenetworks (Supplemental
Files 1 to 14 and Supplemental Table 1). GRENITS gave the posterior
probability of each directed link between two genes. A link probability
threshold was chosen based on the confidence required for assigning
links, then a link in the gene regulatory network was assigned if its
posterior probability was greater than or equal to the link probability
threshold. To identify network modules, the out-degree for each tran-
scription factor in the gene regulatory network was counted. For each
module, the expression level of the most central transcription factor was
plotted with the one time point left-shifted expression levels of the up-
regulated targets, and the mirror symmetry of the one time point left-
shifted expression levels of the downregulated targets. We confirmed
that this formed a tight cluster with high correlations compared with
randomly selected genes. All networks connected a similar proportion of
the DE genes (37–48%) and networks had 6.3 targets per TF on average
(Supplemental Data Set 6). For “regulatory backbone” networks, the
edge-to-node ratio was similar for all networks, with 1.2 to 1.4 edges per
node (Supplemental Data Set 6).
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Network Edge Testing Using Promoter Motif Analysis

Data on the presence of known cis-acting TF binding sites in the 3-kb
upstream region (likely promoter) were obtained from the VirtualPlant
platform (Katari et al., 2010) for a test set of edges between nodes that are
common between all interaction networks in a cell type. Promoter
searching based on the web tool MEME LaB (Brown et al., 2013) was used
to match transcription factors to targets in clusters. To query a set of
specific consensus motifs from Franco-Zorrilla et al. (2014), regions up-
stream and downstream relative to either the transcription start or termi-
nation site for 500 and 1000 bp for each gene locus in the TAIR10
Arabidopsis genome annotation (chr1-5, C and M) from TAIR10 were
obtained (ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/
TAIR10_blastsets/). The pattern-matching PatMatch algorithm from the
TAIR10websitewasused, followingFranco-Zorrillaetal. (2014)withasearch
on the given strand only, but using both the given and the complementary
sequence (to retain theorientationof themotif).Outof the26edgespredicted
by in cortex networks, 10were confirmed as representing known TF binding
sites. The same method was applied to pericycle networks, where 20 out
of 66 edges (30%) were confirmed. The predicted networks consistently
outperform randomized networks (with a similar topology and node/edge
distribution)bya factorof2 (2-fold) in termsofbeingvalidatedusingknownTF
cis-element binding site data. LHY and CCA1 both have a high number of
regulator links in the networks in this study, and almost all of these links are
confirmed in VirtualPlant (;80% for LHY and ;95% for CCA1).

Predicted edges were compared with the interactions found by O’Malley
et al. (2016) using ampDAP-seq and DAP-seq where possible. Across all
networks inthisstudy, thetargetsof86TFshadbeen identifiedusingampDAP-
seq and the targets of 145 TFs had been identified using DAP-seq (a union of
155TFs).Of 1025edges fromTFs testedusingampDAP-seq, and1601edges
fromTFs testedusingDAP-seq, 26 and22%were confirmed, respectively. As
a union, 28%of 1668edgeswere validatedby ampDAP-seqand/orDAP-seq.
Thepercentageof validatededgeswassimilar in eachof the six networks (CU/
CN/CR/PU/PN/PR); validation information is in Supplemental Data Set 5, and
validated edges are colored green in the full network Cytoscape session files
(Supplemental Files 1 to 6).

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers At2g43500 (NLP8) and At2g23320
(WRKY15). All raw and processed microarray data have been deposited in
the Gene Expression Omnibus (GSE91379).

Supplemental Data

Supplemental Figure 1. Clustering of differentially expressed tran-
scripts in untreated cortical and pericycle cell time series.

Supplemental Figure 2. Expression of the circadian clock genes LHY
and CCA1 in the six time series.

Supplemental Figure 3. Clustering of differentially expressed tran-
scripts in nitrogen-treated cortical and pericycle cell time series.

Supplemental Figure 4. Clustering of differentially expressed tran-
scripts in rhizobia-treated cortical and pericycle cell time series.

Supplemental Figure 5. Expression of housekeeping genes is in-
variant between time series.

Supplemental Figure 6. Determination of cluster numbers for each
time series.

Supplemental Table 1. Description of Cytoscape network files.

The following materials have been deposited in the DRYAD repository
under accession number http://dx.doi.org/10.5061/dryad4288j.

Supplemental Data Set 1. RMA-normalized Nimblegen microarray
data for all transcripts measured.

Supplemental Data Set 2. Cluster designations for differentially
expressed transcripts.

Supplemental Data Set 3. Phenotypic analysis.

Supplemental Data Set 4. GO term overrepresentation analysis.

Supplemental Data Set 5. Network edge designations with validation
information.

Supplemental Data Set 6. Network statistics and TF module
annotation and characteristics.

Supplemental Data Set 7. Glutathione S-transferase gene family
expression is highly variable.

Supplemental Data Set 8. Gene family regulation across cell types
and treatments.

Supplemental Data Set 9. Gene model analysis.

Supplemental File 1. CU full network session.

Supplemental File 2. CN full network session.

Supplemental File 3. CR full network session.

Supplemental File 4. PU full network session.

Supplemental File 5. PN full network session.

Supplemental File 6. PR full network session.

Supplemental File 7. CU backbone network session.

Supplemental File 8. CN backbone network session.

Supplemental File 9. CR backbone network session.

Supplemental File 10. PU backbone network session.

Supplemental File 11. PN backbone network session.

Supplemental File 12. PR backbone network session.

Supplemental File 13. CN backbone network session with shared TFs
in middle.

Supplemental File 14. PN backbone network session with shared TFs
in middle.
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