81 research outputs found

    Investigating neural mechanisms underlying division of labor in Temnothorax ants.

    Get PDF
    O patrocínio é uma forma especial de publicidade, um instrumento de promoção da “imagem empresarial” do patrocinador, isto é, de um “instrumento da política de imagem” das empresas, mediante associação de um seu sinal distintivo, maxime a marca, à fama ou celebridade de uma pessoa e/ou à notoriedade do evento patrocinados, participando na repercussão mediática do seu êxito (“transferência de imagem por associação”). Este estudo analisa implicações jurídicas do patrocínio desportivo

    Learning of bimodal versus unimodal signals in restrained bumble bees

    Get PDF
    Q2Q1Similar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load for pollinators, impairing performance, or might benefit them by facilitating learning, memory and decision making. Here, we evaluated learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) versus complex (bimodal) signals under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better than or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour–odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24 h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurate control of the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound.http://orcid.org/0000-0001-7928-1885Revista Nacional - Indexad

    Learning of bimodal vs. unimodal signals in restrained bumble bees

    Get PDF
    Similar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load for pollinators, impairing performance, or might benefit them by facilitating learning, memory and decision making. Here, we evaluated learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) versus complex (bimodal) signals under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better than or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour-odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24?h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurate control of the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound

    Visual processing in the central bee brain

    Get PDF
    Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur

    Stable Panoramic Views Facilitate Snap-Shot Like Memories for Spatial Reorientation in Homing Pigeons

    Get PDF
    Following spatial disorientation, animals can reorient themselves by relying on geometric cues (metric and sense) specified both by the macroscopic surface layout of an enclosed space and prominent visual landmarks in arrays. Whether spatial reorientation in arrays of landmarks is based on explicit representation of the geometric cues is a matter of debate. Here we trained homing pigeons (Columba livia) to locate a food-reward in a rectangular array of four identical or differently coloured pipes provided with four openings, only one of which allowed the birds to have access to the reward. Pigeons were trained either with a stable or a variable position of the opening on pipes, so that they could view the array either from the same or a variable perspective. Explicit mapping of configural geometry would predict successful reorientation irrespective of access condition. In contrast, we found that a stable view of the array facilitated spatial learning in homing pigeons, likely through the formation of snapshot-like memories

    A New Ant Species of the Genus Tetramorium Mayr, 1855 (Hymenoptera: Formicidae) from Saudi Arabia, with a Revised Key to the Arabian Species

    Get PDF
    Tetramorium amalae sp. n. is described and illustrated from Saudi Arabia based on two worker caste specimens collected in Al Bahah region. The new species belongs to the T. shilohense group and appears to be closely related to T. dysderke Bolton from Nigeria. T. amalae is distinguished by having well-developed frontal carinae, smaller eyes, greater head length and width, greater pronotal width, and the petiole node is longer than broad. Tetramorium latinode Collingwood & Agosti is recorded for the first time from Saudi Arabia and for only the second time since the original description. The worker caste of T. latinode is redescribed and illustrated using scanning electron micrographs to facilitate recognition and the gyne is described for the first time with observations given on species relationships, biology and habitat. A revised key to the nineteen Tetramorium species recorded from Arabian Peninsula based on worker castes is provided. Tetramorium bicarinatum (Nylander) is recorded for the first time from Saudi Arabia. It is suggested that T. amalae and T. latinode are endemic to the Arabian Peninsula

    Chromatophore Activity during Natural Pattern Expression by the Squid Sepioteuthis lessoniana: Contributions of Miniature Oscillation

    Get PDF
    Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS). In this study we used semi-intact squid (Sepioteuthis lessoniana) displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between “feature” and “background” areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively
    corecore