3,913 research outputs found

    Modeling of electron emission processes accompanying Radon-α\alpha-decays within electrostatic spectrometers

    Get PDF
    Electrostatic spectrometers utilized in high-resolution beta-spectroscopy studies such as in the Karlsruhe Tritium Neutrino (KATRIN) experiment have to operate with a background level of less than 10^(-2) counts per second. This limit can be exceeded by even a small number of Rn-219 or Rn-220 atoms being emanated into the volume and undergoing alpha-decay there. In this paper we present a detailed model of the underlying background-generating processes via electron emission by internal conversion, shake-off and relaxation processes in the atomic shells of the Po-215 and Po-216 daughters. The model yields electron energy spectra up to 400 keV and electron multiplicities of up to 20 which are compared to experimental data.Comment: 7 figure

    Vesicles in solutions of hard rods

    Full text link
    The surface free energy of ideal hard rods near curved hard surfaces is determined to second order in curvature for surfaces of general shape. In accordance with previous results for spherical and cylindrical surfaces it is found that this quantity is non-analytical when one of the principal curvatures changes signs. This prohibits writing it in the common Helfrich form. It is shown that the non-analytical terms are the same for any aspect ratio of the rods. These results are used to find the equilibrium shape of vesicles immersed in solutions of rod-like (colloidal) particles. The presence of the particles induces a change in the equilibrium shape and to a shift of the prolate-oblate transition in the vesicle phase diagram, which are calculated within the framework of the spontaneous curvature model. As a consequence of the special form of the energy contribution due to the rods these changes cannot be accounted for by a simple rescaling of the elastic constants of the vesicle as for solutions of spherical colloids or polymers.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Crystal structures and freezing of dipolar fluids

    Full text link
    We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole at T=0. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar) interaction three phases are found upon increasing the dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential ∼r−n\sim r^{-n}. A crossover between qualitatively different sequences of phases occurs near the exponent n=12n=12. The results are applicable to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of the Stockmayer fluid by density-functional theory.Comment: submitted to Phys. Rev.

    Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth model

    Get PDF
    Thirty‒one GPS geodetic measurements of crustal uplift in southernmost South America determined extraordinarily high trend rates (> 35 mm/yr) in the north‒central part of the Southern Patagonian Icefield. These trends have a coherent pattern, motivating a refined viscoelastic glacial isostatic adjustment model to explain the observations. Two end‒member models provide good fits: both require a lithospheric thickness of 36.5 ± 5.3 km. However, one end‒member has a mantle viscosity near η =1.6 ×1018 Pa s and an ice collapse rate from the Little Ice Age (LIA) maximum comparable to a lowest recent estimate of 1995–2012 ice loss at about −11 Gt/yr. In contrast, the other end‒member has much larger viscosity: η = 8.0 ×1018 Pa s, half the post–LIA collapse rate, and a steadily rising loss rate in the twentieth century after AD 1943, reaching −25.9 Gt/yr during 1995–2012.Fil: Lange, H.. Technische Universitaet Dresden; AlemaniaFil: Casassa, G.. Centro de Estudios Cientificos; Chile. Universidad de Magallanes; ChileFil: Ivins, E. R.. Institute of Technology. Jet propulsion Laboratory; Estados UnidosFil: Schroeder, L.. Technische Universitaet Dresden; AlemaniaFil: Fritsche, M.. Technische Universitaet Dresden; AlemaniaFil: Richter, Andreas Jorg. Technische Universitaet Dresden; Alemania. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Astrometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Groh, A.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani

    The impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    Get PDF
    The post main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate and the effect of a close companion. We study how the red supergiant lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor as well as the structure of the stars at that time change for various mass-loss rates during the red supergiant phase (RSG), and for two different initial rotation velocities. The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and therefore on the luminosity function of RSGs. At solar metallicity, the enhanced mass-loss rate models do produce significant changes on the populations of blue, yellow and red supergiants. When extended blue loops or blue ward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post RSG objects. These post RSG stars are predicted to show much smaller surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever, at the pre-supernova stage, the H-rich envelope contains more than about 5\% of the initial mass, the star is a red supergiant, and whenever the H-rich envelope contains less than 1\% of the total mass the star is a blue supergiant. For intermediate situations, intermediate colors/effective temperatures are obtained. Yellow progenitors for core collapse supernovae can be explained by the enhanced mass-loss rate models, while the red progenitors are better fitted by the standard mass-loss rate models.Comment: 19 pages, 11 figures, 6 tables, accepted for publication in Astronomy and Astrophysic

    Inhomogeneous magnetization in dipolar ferromagnetic liquids

    Full text link
    At high densities fluids of strongly dipolar spherical particles exhibit spontaneous long-ranged orientational order. Typically, due to demagnetization effects induced by the long range of the dipolar interactions, the magnetization structure is spatially inhomogeneous and depends on the shape of the sample. We determine this structure for a cubic sample by the free minimization of an appropriate microscopic density functional using simulated annealing. We find a vortex structure resembling four domains separated by four domain walls whose thickness increases proportional to the system size L. There are indications that for large L the whole configuration scales with the system size. Near the axis of the mainly planar vortex structure the direction of the magnetization escapes into the third dimension or, at higher temperatures, the absolute value of the magnetization is strongly reduced. Thus the orientational order is characterized by two point defects at the top and the bottom of the sample, respectively. The equilibrium structure in an external field and the transition to a homogeneous magnetization for strong fields are analyzed, too.Comment: 17 postscript figures included, submitted to Phys. Rev.
    • …
    corecore