1,498 research outputs found

    A new extensive catalog of optically variable AGN in the GOODS Fields and a new statistical approach to variability selection

    Full text link
    Variability is a property shared by practically all AGN. This makes variability selection a possible technique for identifying AGN. Given that variability selection makes no prior assumption about spectral properties, it is a powerful technique for detecting both low-luminosity AGN in which the host galaxy emission is dominating and AGN with unusual spectral properties. In this paper, we will discuss and test different statistical methods for the detection of variability in sparsely sampled data that allow full control over the false positive rates. We will apply these methods to the GOODS North and South fields and present a catalog of variable sources in the z band in both GOODS fields. Out of 11931 objects checked, we find 155 variable sources at a significance level of 99.9%, corresponding to about 1.3% of all objects. After rejection of stars and supernovae, 139 variability selected AGN remain. Their magnitudes reach down as faint as 25.5 mag in z. Spectroscopic redshifts are available for 22 of the variability selected AGN, ranging from 0.046 to 3.7. The absolute magnitudes in the rest-frame z-band range from ~ -18 to -24, reaching substantially fainter than the typical luminosities probed by traditional X-ray and spectroscopic AGN selection in these fields. Therefore, this is a powerful technique for future exploration of the evolution of the faint end of the AGN luminosity function up to high redshifts.Comment: Accepted for publication in The Astrophysical Journal (version 2: minor changes to text after receiving comments

    Analysis of the SFR - M* plane at z<3: single fitting versus multi-Gaussian decomposition

    Get PDF
    The analysis of galaxies on the star formation rate - stellar mass (SFR-M*) plane is a powerful diagnostic for galaxy evolution at different cosmic times. We consider a sample of 24463 galaxies from the CANDELS/GOODS-S survey to conduct a detailed analysis of the SFR-M* relation at redshifts 0.5z<\leqslant z<3 over more than three dex in stellar mass. To obtain SFR estimates, we utilise mid- and far-IR photometry when available, and rest-UV fluxes for all the other galaxies. We perform our analysis in different redshift bins, with two different methods: 1) a linear regression fitting of all star-forming galaxies, defined as those with specific star formation rates log10(sSFR/yr1)>9.8\rm log_{10}(sSFR/yr^{-1}) > -9.8, similarly to what is typically done in the literature; 2) a multi-Gaussian decomposition to identify the galaxy main sequence (MS), the starburst sequence and the quenched galaxy cloud. We find that the MS slope becomes flatter when higher stellar mass cuts are adopted, and that the apparent slope change observed at high masses depends on the SFR estimation method. In addition, the multi-Gaussian decomposition reveals the presence of a starburst population which increases towards low stellar masses and high redshifts. We find that starbursts make up ~5% of all galaxies at z=0.5-1.0, while they account for ~16% of galaxies at 2<z<<z<3 with log10(M)=_{10}(M^{*})=8.25-11.25. We conclude that the dissection of the SFR-M* in multiple components over a wide range of stellar masses is necessary to understand the importance of the different modes of star formation through cosmic time.Comment: 15 pages, 12 figures, 1 table. Accepted for publication in A&A, after addressing referee report. Main changes with respect to v1: two new appendixes to investigate the impact of redshift outliers and to test a two-Gaussian component fit to the sSFR distribution. No conclusion change

    Star formation and quenching among the most massive galaxies at z~1.7

    Get PDF
    We have conducted a detailed object-by-object study of a mass-complete (M*>10^11 M_sun) sample of 56 galaxies at 1.4 < z < 2 in the GOODS-South field, showing that an accurate de-blending in MIPS/24um images is essential to properly assign to each galaxy its own star formation rate (SFR), whereas an automatic procedure often fails. This applies especially to galaxies with SFRs below the Main Sequence (MS) value, which may be in their quenching phase. After that, the sample splits evenly between galaxies forming stars within a factor of 4 of the MS rate (~45%), and sub-MS galaxies with SFRs ~10-1000 times smaller (~55%). We did not find a well defined class of intermediate, transient objects below the MS, suggesting that the conversion of a massive MS galaxy into a quenched remnant may take a relatively short time (<1 Gyr), though a larger sample should be analyzed in the same way to set precise limits on the quenching timescale. X-ray detected AGNs represent a ~30% fraction of the sample, and are found among both star-forming and quenched galaxies. The morphological analysis revealed that ~50% of our massive objects are bulge-dominated, and almost all MS galaxies with a relevant bulge component host an AGN. We also found sub-MS SFRs in many bulge-dominated systems, providing support to the notion that bulge growth, AGN activity and quenching of star formation are closely related to each other.Comment: 27 pages, 19 figures, accepted for publication by MNRA

    Gemini Planet Imager Observational Calibrations II: Detector Performance and Calibration

    Full text link
    The Gemini Planet Imager is a newly commissioned facility instrument designed to measure the near-infrared spectra of young extrasolar planets in the solar neighborhood and obtain imaging polarimetry of circumstellar disks. GPI's science instrument is an integral field spectrograph that utilizes a HAWAII-2RG detector with a SIDECAR ASIC readout system. This paper describes the detector characterization and calibrations performed by the GPI Data Reduction Pipeline to compensate for effects including bad/hot/cold pixels, persistence, non-linearity, vibration induced microphonics and correlated read noise.Comment: 11 pages, 6 figures. Proceedings of the SPIE, 9147-28

    Survey design for Spectral Energy Distribution fitting: a Fisher Matrix approach

    Full text link
    The spectral energy distribution (SED) of a galaxy contains information on the galaxy's physical properties, and multi-wavelength observations are needed in order to measure these properties via SED fitting. In planning these surveys, optimization of the resources is essential. The Fisher Matrix formalism can be used to quickly determine the best possible experimental setup to achieve the desired constraints on the SED fitting parameters. However, because it relies on the assumption of a Gaussian likelihood function, it is in general less accurate than other slower techniques that reconstruct the probability distribution function (PDF) from the direct comparison between models and data. We compare the uncertainties on SED fitting parameters predicted by the Fisher Matrix to the ones obtained using the more thorough PDF fitting techniques. We use both simulated spectra and real data, and consider a large variety of target galaxies differing in redshift, mass, age, star formation history, dust content, and wavelength coverage. We find that the uncertainties reported by the two methods agree within a factor of two in the vast majority (~ 90%) of cases. If the age determination is uncertain, the top-hat prior in age used in PDF fitting to prevent each galaxy from being older than the Universe needs to be incorporated in the Fisher Matrix, at least approximately, before the two methods can be properly compared. We conclude that the Fisher Matrix is a useful tool for astronomical survey design.Comment: Accepted by ApJ; online Fisher Matrix tool available at http://galfish.physics.rutgers.ed

    A direct measurement of hierarchical growth in galaxy groups since z~1

    Full text link
    We present the first measurement of the evolution of the galaxy group stellar mass function (GrSMF) to redshift z>~1 and low masses (M*>10^12 Msun). Our results are based on early data from the Carnegie-Spitzer-IMACS (CSI) Survey, utilizing low-resolution spectra and broadband optical/near-IR photometry to measure redshifts for a 3.6um selected sample of 37,000 galaxies over a 5.3 deg^2 area to z~1.2. Employing a standard friends-of-friends algorithm for all galaxies more massive than log(M*/Msun)=10.5, we find a total of ~4000 groups. Correcting for spectroscopic incompleteness (including slit collisions), we build cumulative stellar mass functions for these groups in redshift bins at z>0.35, comparing to the z=0 and z>0 mass functions from various group and cluster samples. Our derived mass functions match up well with z>0.35 X-ray selected clusters, and strong evolution is evident at all masses over the past 8 Gyr. Given the already low level of star formation activity in galaxies at these masses, we therefore attribute most of the observed growth in the GrSMF to group-group and group-galaxy mergers, in accordance with qualitative notions of hierarchical structure formation. Given the factor 3-10 increase in the number density of groups and clusters with M*>10^12 Msun since z=1 and the strong anticorrelation between star formation activity and environmental density, this late-time growth in group-sized halos may therefore be an important contributor to the structural and star-formation evolution of massive galaxies over the past 8 Gyr.Comment: 6 pages, 3 figures, submitted to ApJL. This paper is based on the Carnegie-Spitzer-IMACS (CSI) Survey, described in more detail at http://csi.obs.carnegiescience.ed
    corecore