17 research outputs found

    The co-occurrence of autistic and ADHD dimensions in adults: an etiological study in 17 770 twins

    Get PDF
    Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) often occur together. To obtain more insight in potential causes for the co-occurrence, this study examined the genetic and environmental etiology of the association between specific ASD and ADHD disorder dimensions. Self-reported data on ASD dimensions social and communication difficulties (ASDsc), and repetitive and restricted behavior and interests (ASDr), and ADHD dimensions inattention (IA), and hyperactivity/impulsivity (HI) were assessed in a community sample of 17 770 adult Swedish twins. Phenotypic, genetic and environmental associations between disorder dimensions were examined in a multivariate model, accounting for sex differences. ASDr showed the strongest associations with IA and HI in both sexes (rp 0.33 to 0.40). ASDsc also correlated moderately with IA (females rp 0.29 and males rp 0.35) but only modestly with HI (females rp 0.17 and males rp 0.20). Genetic correlations ranged from 0.22 to 0.64 and were strongest between ASDr and IA and HI. Sex differences were virtually absent. The ASDr dimension (reflecting restricted, repetitive and stereotyped patterns of behavior, interests and activities) showed the strongest association with dimensions of ADHD, on a phenotypic, genetic and environmental level. This study opens new avenues for molecular genetic research. As our findings demonstrated that genetic overlap between disorders is dimension-specific, future gene-finding studies on psychiatric comorbidity should focus on carefully selected genetically related dimensions of disorders

    Psychiatric gene discoveries shape evidence on ADHD's biology

    Get PDF
    The Wellcome Trust, MRC and Action Medical Research have provided ADHD research support for AT, PH, JM, NW, MJO, MCO; we also acknowledge support from NIH grants R1 3MH059126, R0 1MH62873 and R0 1MH081803 to Dr SV Faraone. Dr E Mick received funding through the UMass Center for Clinical and Translational Science (P30HD004147) supported by the NIH.A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 Ă— 10-4) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders.Publisher PDFPeer reviewe

    Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty.

    No full text
    Little is known about genes regulating male puberty. Further, while many identified pubertal timing variants associate with age at menarche, a late manifestation of puberty, and body mass, little is known about these variants' relationship to pubertal initiation or tempo. To address these questions, we performed genome-wide association meta-analysis in over 11 000 European samples with data on early pubertal traits, male genital and female breast development, measured by the Tanner scale. We report the first genome-wide significant locus for male sexual development upstream of myocardin-like 2 (MKL2) (P = 8.9 Ă— 10(-9)), a menarche locus tagging a developmental pathway linking earlier puberty with reduced pubertal growth (P = 4.6 Ă— 10(-5)) and short adult stature (p = 7.5 Ă— 10(-6)) in both males and females. Furthermore, our results indicate that a proportion of menarche loci are important for pubertal initiation in both sexes. Consistent with epidemiological correlations between increased prepubertal body mass and earlier pubertal timing in girls, body mass index (BMI)-increasing alleles correlated with earlier breast development. In boys, some BMI-increasing alleles associated with earlier, and others with delayed, sexual development; these genetic results mimic the controversy in epidemiological studies, some of which show opposing correlations between prepubertal BMI and male puberty. Our results contribute to our understanding of the pubertal initiation program in both sexes and indicate that although mechanisms regulating pubertal onset in males and females may largely be shared, the relationship between body mass and pubertal timing in boys may be complex and requires further genetic studies
    corecore