10 research outputs found

    Redescription of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 (Ciliophora, Oligohymenophorea) from a Hot Spring in Iceland with Identification Key for Dexiotricha species

    Get PDF
    Publisher's version (útgefin grein)We isolated an encysted ciliate from a geothermal field in Iceland. The morphological features of this isolate fit the descriptions of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 very well. These comprise body shape and size in vivo, the number of somatic kineties, and the positions of macronucleus and contractile vacuole. Using state-of-the-art taxonomic methods, the species is redescribed, including phylogenetic analyses of the small subunit ribosomal RNA (SSU rRNA) gene as molecular marker. In the phylogenetic analyses, D. colpidiopsis clusters with the three available SSU rRNA gene sequences of congeners, suggesting a monophyly of the genus Dexiotricha. Its closest relative in phylogenetic analyses is D. elliptica, which also shows a high morphological similarity. This is the first record of a Dexiotricha species from a hot spring, indicating a wide temperature tolerance of this species at least in the encysted state. The new findings on D. colpidiopsis are included in a briefly revision of the scuticociliate genus Dexiotricha and an identification key to the species.This study was funded by grants awarded to TS by Europlanet 2020 (project 15-EPN-006) and by the Bundesministerium für Bildung und Forschung (BMBF)/Deutsches Zentrum für Luft- und Raumfahrt (DLR, grant 50WB1737). Europlanet 2020 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654208. Zhishuai Qu received funds from the China Scholarship Council (CSC). We thank Fengchao Li for his support with species identification and Natasa Desnica (Matis) for the trace metal analysis.Peer Reviewe

    Marine Microbial Communities of North and South Shelves of Iceland

    Get PDF
    The work is part of the Microbes in the Icelandic Marine Environment (MIME) project which was funded by the Grant of Excellence (No. 163266-051) of the Icelandic Research Fund (Rannís). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.The North Atlantic Ocean surrounds Iceland, influencing its climate and hosting a rich ecosystem that provides the Icelandic nation with economically valuable marine species. The basis of the Icelandic marine ecosystem consists of communities of diverse microorganisms including bacteria, archaea, and unicellular eukaryotes. While the primary production of Icelandic waters has been monitored since the 50s, there is limited knowledge of the taxonomic and metabolic diversity of the marine microorganisms in Icelandic waters based on molecular techniques. In this study, we conducted annual sampling at four hydrographic stations over several years to characterize marine microbial communities and their metabolic potential. Using 16S ribosomal RNA gene amplicon sequencing and metagenomics, we resolved the microbial community composition on the North and South Shelves of Iceland, analyzed its evolution from 2011 to 2018, identified frequently occurring taxa, and predicted their potential metabolism. The results showed correlations between the marine microbial community profiles and the water masses in spring, between the North and South Shelves of Iceland. The differences in marine microbial diversity appear to be linked to the average seawater temperature in the mixed surface layer at each sampling station which also constrains the relative abundance of photosynthetic microorganisms. This study set a baseline for the marine microbial diversity in Icelandic marine waters and identified three photosynthetic microorganisms – the cyanobacteria Synechococcus and two members of the Chlorophyta clade – as valuable indicator species for future monitoring, as well as for application in ecosystem modeling in context with research on climate change.Peer reviewe

    Catalyzing progress in the blue economy through joint marine microbiome research across the Atlantic

    Get PDF
    International agreements recognize the importance of cooperative scientific research to conserve and promote sustainable development of a shared Atlantic Ocean. In 2022, the All-Atlantic Ocean Research and Innovation Alliance Declaration was signed. The All-Atlantic Declaration continues and extends relationships forged by the Galway Statement on Atlantic Ocean Cooperation and the Belém Statement on Atlantic Ocean Research and Innovation Cooperation. These efforts are consistent with programs, actions, and aims of the United Nations Decade of Ocean Science for Sustainable Development. In preparation for implementation of the All-Atlantic Declaration, members of the Marine Microbiome Working Group and the Marine Biotechnology Initiative for the Atlantic under the Galway and Belém Statements respectively, joined forces to call for cooperation across the Atlantic to increase marine microbiome and biotechnology research to promote ocean health and a sustainable bioeconomy. This article reviews the goals of the marine microbiome and biotechnology initiatives under the Galway and Belém Statements and outlines an approach to implement those goals under the All-Atlantic Declaration through a Blue Biotech and Marine Microbiome (BBAMM) collaboration

    A total of 219 metagenome-assembled genomes of microorganisms from Icelandic marine waters

    Get PDF
    The work is part of the Microbes in the Icelandic Marine Environment (MIME) project which was funded by the Grant of Excellence (No. 163266-051) of the Icelandic Research Fund (Rannís). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Publisher Copyright: © 2021 Jégousse et al.Marine microorganisms contribute to the health of the global ocean by supporting the marine food web and regulating biogeochemical cycles. Assessing marine microbial diversity is a crucial step towards understanding the global ocean. The waters surrounding Iceland are a complex environment where relatively warm salty waters from the Atlantic cool down and sink down to the deep. Microbial studies in this area have focused on photosynthetic micro- and nanoplankton mainly using microscopy and chlorophyll measurements. However, the diversity and function of the bacterial and archaeal picoplankton remains unknown. Here, we used a co-assembly approach supported by a marine mock community to reconstruct metagenome-assembled genomes (MAGs) from 31 metagenomes from the sea surface and seafloor of four oceanographic sampling stations sampled between 2015 and 2018. The resulting 219 MAGs include 191 bacterial, 26 archaeal and two eukaryotic MAGs to bridge the gap in our current knowledge of the global marine microbiome.Peer reviewe

    Molecular probes and microarrays for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta)

    Get PDF
    Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project (http://www.midtal.com). The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space

    Discrimination of the toxigenic dinoflagellate species Alexandrium tamarense and Alexandrium ostenfeldii in co-occurring natural populations from Scottish coastal waters

    Get PDF
    Blooms of the toxic dinoflagellate Alexandrium tamarense (Lebour) Balech, a known producer of potent neurotoxins associated with paralytic shellfish poisoning (PSP), are common annual events along the Scottish east coast. The co-occurrence of a second Alexandrium species, A. ostenfeldii (Paulsen) Balech & Tangen is reported in this study from waters of the Scottish east coast. The latter species has been suspected to be an alternative source of PSP toxins in northern Europe. Recent identification of toxic macrocyclic imines known as spirolides in A. ostenfeldii indicates a potential new challenge for monitoring toxic Alexandrium species and their respective toxins in natural populations. In mixed phytoplankton assemblages, Alexandrium species are dicult to discriminate accurately by conventional light microscopy. Species-specific rRNA probes based upon 18S and 28S ribosomal DNA sequences were developed for A. ostenfeldii and tested by dot-blot and fluorescence in situ hybridization (FISH) techniques. Hybridization patterns of A. ostenfeldii probes for cultured Alexandrium isolates, and cells from field populations from the Scottish east coast, were compared with those of rDNA probes for A. tamarense and a universal dinoflagellate probe. Alexandrium cell numbers in field samples determined by whole-cell in situ hybridization were much lower than those determined by optical microscopy with the Utermöhl method involving sedimentation chambers, but the results were highly correlated (e.g. r2=0.94; n=6 for A. tamarense). Determination of spirolides and PSP toxins by instrumental analysis on board ship demonstrated the presence of both toxi

    Thermoactinoamide A, an Antibiotic Lipophilic Cyclopeptide from the Icelandic Thermophilic Bacterium Thermoactinomyces vulgaris

    No full text
    The thermophilic bacterium Thermoactinomyces vulgaris strain ISCAR 2354, isolated from a coastal hydrothermal vent in Iceland, was shown to contain thermoactinoamide A (1), a new cyclic hexapeptide composed of mixed d and l amino acids, along with five minor analogues (2-6). The structure of 1 was determined by one- and two-dimensional NMR spectroscopy, high-resolution tandem mass spectrometry, and advanced Marfey's analysis of 1 and of the products of its partial hydrolysis. Thermoactinoamide A inhibited the growth of Staphylococcus aureus ATCC 6538 with an MIC value of 35 μM. On the basis of literature data and this work, cyclic hexapeptides with mixed d/l configurations, one aromatic amino acid residue, and a prevalence of lipophilic residues can be seen as a starting point to define a new, easily accessible scaffold in the search for new antibiotic agents

    Molecular probes and microarrays for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta)

    Get PDF
    Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project (http://www.midtal.com). The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space

    Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms

    No full text
    CP12, a small intrinsically unstructured protein, plays an important role in the regulation of the Calvin cycle by forming a complex with phosphoribulokinase (PRK) and glyceraldehyde-3- phosphate dehydrogenase (GAPDH). An extensive search in databases revealed 129 protein sequences from: higher plants, mosses and liverworts, different groups of eukaryotic algae and cyanobacteria. CP12 was identified throughout the Plantae, apart from in the Prasinophyceae. Within the Chromalveolata, two putative CP12 proteins have been found in the genomes of the diatom Thalassiosira pseudonana and the haptophyte Emiliania huxleyi, but specific searches in further chromalveolate genomes or EST datasets did not reveal any CP12 sequences in other Prymnesiophyceae, Dinophyceae or Pelagophyceae. A species from the Euglenophyceae within the Excavata also appeared to lack CP12. Phylogenetic analysis showed a clear separation into a number of higher taxonomic clades and among different forms of CP12 in higher plants. Cyanobacteria, Chlorophyceae, Rhodophyta & Glaucophyceae, Bryophyta, and the CP12-3 forms in higher plants all form separate clades. The degree of disorder of CP12 was higher in higher plants than in eukaryotic algae and cyanobacteria apart from the green algal class Mesostigmatophyceae that is ancestral to the streptophytes. This suggests that CP12 has evolved to become more flexible and possibly take on more general roles. Different features of the CP12 sequences in the different taxonomic groups and their potential functions and interactions in the Calvin cycle are discussed
    corecore