15 research outputs found

    Development of a biodegradable microstent for minimally invasive treatment of Fallopian tube occlusions

    Get PDF
    Obstructions of the Fallopian tube represent one of the most common reasons for an unfulfilled desire to have children. Microstent technology opens up new therapeutic possibilities to restore the natural lumen of the Fallopian tube within a single treatment. Within the current work we developed a self-expandable biodegradable microstent for gynecological applications. Based on a novel microstent design, prototypes were manufactured from poly-L-lactide tubing by means of fs-laser cutting. Microstent prototypes were characterized morphologically by means of scanning electron microscopy and biaxial laser scanning. As manufactured, a microstents outside diameter of about 2.3 mm and a strut thickness/width of about 114 µm/103 µm was measured. Mechanical characterization of microstents included bending as well as crimping and release behavior. After crimping to a minimum diameter of 0.8 mm and consecutive release, a microstent recovery to a diameter of 1.8 mm was found. Therefore, proof-of-concept for the self-expandable microstent could be successfully provided. © 2020 by Walter de Gruyter Berlin/Boston 2020

    Mode-matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Get PDF
    Boosting nonlinear frequency conversion in extremely confined volumes remains a key challenge in nano-optics, nanomedicine, photocatalysis, and background-free biosensing. To this aim, field enhancements in plasmonic nanostructures are often exploited to effectively compensate for the lack of phase-matching at the nanoscale. Second harmonic generation (SHG) is, however, strongly quenched by the high degree of symmetry in plasmonic materials at the atomic scale and in nanoantenna designs. Here, we devise a plasmonic nanoantenna lacking axial symmetry, which exhibits spatial and frequency mode overlap at both the excitation and the SHG wavelengths. The effective combination of these features in a single device allows obtaining unprecedented SHG conversion efficiency. Our results shed new light on the optimization of SHG at the nanoscale, paving the way to new classes of nanoscale coherent light sources and molecular sensing devices based on nonlinear plasmonic platforms.Comment: 14 pages, 4 figure

    Development of a test setup for hydrodynamic characterization of hydrocephalus shunts

    No full text
    Implantation of a shunt system is the most common neurosurgical procedure for the treatment of hydrocephalus. Hydrodynamic parameters of hydrocephalus shunt systems are valuable variables to address patients' needs. In this report, we present a test setup to evaluate hydrodynamic parameters of hydrocephalus shunt systems. The test setup was validated using a stainless steel capillary and compared with the analytical solution according to Bernoulli's equation. It was demonstrated that the experimental setup is able to model the pressure in a physiologically relevant range. The measured and averaged flow resistance was 2.96 mmHg/(ml min-1). According to the analytical solution of Bernoulli's equation, the flow resistance is 2.86 mmHg/(ml min-1). Therefore, the measured flow resistance is 3.5% higher than the analytical solution. Moreover, the nonlinear characteristic of the pressure drop at the inlet and outlet of the capillary plays a minor role compared to the friction of the tube flow. As a result, the increase in flow rate with increasing pressure load can be well approximated by a linear function for the low flow rates measured here. The experimental setup presented will be used in the future to characterize commercially available shunt systems under various hydrodynamic conditions

    Permeability and wettability of bioresorbable nanofiber nonwoven membranes

    No full text
    Nanofiber nonwoven membranes produced by electrospinning provide the possibility to adjust mechanical material parameters as well as simultaneously the biologically relevant properties - a fundamental aspect in developing new implants and medical devices. Wettability and permeability are also of great importance, as they have a decisive influence on the release of drugs, cell attachment, degradability and finally the nutrient supply of the surrounding tissue. Within this work the wettability and permeability of several electrospun poly-L-lactide nonwovens, including different additives, were investigated and a correlation to membrane morphology was found. A potential modification of the permeability by the fluid viscosity was also investigated. The results form a fundamental building block in the development of permeable biodegradable implants and medical devices

    Biocompatibility of magnetic iron oxide nanoparticles for biomedical applications

    No full text
    Magnetic nanoparticles are highly promising for the usage in various biomedical applications including magnetic particle imaging (MPI), cancer hyperthermia treatment or as drug carriers. The present study aims at assessing in vitro biocompatibility of two commercially available magnetic iron oxide nanoparticle formulations: dextran-based magnetic nanoparticle synomag-D and bionized nanoferrite BNF-starch. Biological performance of both nanoparticle formulations were studied in human endothelial cells by analyzing cell viability and nanoparticle internalization in order to judge their suitability as theranostics

    Transcatheter mitral valve repair devices - in vitro studies on the influence of device-width on mitral regurgitation

    No full text
    Mitral regurgitation (MR) is the most prevalent valvulopathy in the USA and the second most prevalent valvulopathy in Europe. Despite excellent clinical results of surgical mitral valve repair (SMVR), transcatheter-based mitral valve repair (MVR) procedures emerged as a feasible treatment option for surgically inoperable or high-risk patients suffering from clinically relevant MR. The current study investigates the impact of device-induced coaptationwidth on the hydrodynamic performance of insufficient mitral valves (MV) during left ventricular (LV) systole. A non-calcified, pathological MV model (MVM) featuring a D-shaped MV annulus with an area of 7.6 cm2 and a flail gap in the A2-P2 region was employed in an experimental setup. Pressure gradient-volumetric flow rate (Δp-Q) relations were investigated for steady-state backward flow with transvalvular pressure gradients ranging from (0.75 ≤ Δp ≤ 177.36) mmHg. Glycerol-water mixture (36 % (v/v) glycerol in water) at 37 °C with a density of (1 098.2 ± 1.3) kg·m-3 and a dynamic viscosity of 3.5 mPa∙s was used as circulatory fluid. In order to determine the impact of the width of transcatheter MVR devices during LV-systole Δp-Q relations were investigated for three MVM-configurations: (i) MVM without MVR device, (ii) MVM with one MVR device and (iii) MVM with two MVR devices implanted in the A2-P2 region. The MVR devices were manufactured from steel sheets with a thickness of 0.2 mm and feature arm lengths of 9.0 mm and a width of 5.0 mm. The conducted investigations show that the implantation of MVR devices in the A2-P2 region prevents the manifestation of an A2-P2 flail gap and thereby effectively reduces the retrograde blood flow during the LV-systole by 13 % with one MVR device and 27 % with two MVR devices implanted. Thus, the application of two MVR devices with a combined device-induced width of 10 mm results in a better MR reduction than the implantation of one MVR device with a device-induced width of 5 mm

    Development of a drug-eluting microstent for micro-invasive glaucoma surgery

    No full text
    Glaucoma represents the leading cause of irreversible blindness worldwide. Therapeutic approaches are based on the lowering of intraocular pressure (IOP). Micro-invasive glaucoma surgery (MIGS) offers perspectives for implant based IOP-reduction with reduced complication rates compared to conventional surgical approaches. Nevertheless, available devices suffer from complications like hypotony and fibrotic encapsulation. The current work focuses on the development of a minimally invasive implantable drugeluting microstent for the drainage of aqueous humour into suprachoroidal or subconjunctival space. Technical feasibility of a micro-scale resorbable nonwoven for the prevention of hypotony and of a drug-eluting coating for the prevention of fibrosis is assessed. Microstent base bodies with a length of 10 mm and an inner/outer diameter of 0.20 mm / 0.35 mm were manufactured. For the prevention of hypotony, resorbable nonwovens with an adequate flow resistance of 1.543 mmHg/μl min-1 were manufactured in the inflow area of microstents. A drug-eluting coating in the outflow area of microstents was developed based on the model drug fluorescein diacetate. Micro-invasive ab interno implantation of a microstent prototype into suprachoroidal space of a porcine eye post mortem was successfully performed, using an injector device. Future studies will focus on the development of an antifibrotic drug-eluting coating and further in vitro, ex vivo and in vivo testing of the devices

    Radial compliance of porcine Fallopian tubes ex vivo – perspectives for the development of a gynecological microstent

    No full text
    Fallopian tube occlusions represent one of the most common causes of female sterility. As an innovative treatment approach for affected persons, we previously presented the concept of a novel polymeric, self-expanding, and bioresorbable microstent. As a basis for microstent development, knowledge of the mechanical properties of the anatomical target structure represents a crucial requirement. The current work describes a methodological approach for the experimental determination of radial Fallopian tube compliance using optical coherence tomography. It could be shown that a quantitative assessment of the mechanical properties of porcine Fallopian tube samples - as a whole anatomical structure including the Tunica mucosa, the Tunica muscularis, and the Tunica serosa - is possible, using the described test setup. Future investigations on human samples will allow for valuable information regarding the structural-mechanical properties of the Fallopian tube. Therefore, the current work offers perspectives for the development of a novel gynecological microstent for the treatment of Fallopian tube occlusions
    corecore