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ABSTRACT: 

Boosting nonlinear frequency conversion in extremely confined volumes remains a key challenge in 

nano-optics, nanomedicine, photocatalysis, and background-free biosensing. To this aim, field 

enhancements in plasmonic nanostructures are often exploited to effectively compensate for the lack of 

phase-matching at the nanoscale. Second harmonic generation (SHG) is, however, strongly quenched 

by the high degree of symmetry in plasmonic materials at the atomic scale and in nanoantenna designs. 

Here, we devise a plasmonic nanoantenna lacking axial symmetry, which exhibits spatial and 

frequency mode overlap at both the excitation and the SHG wavelengths. The effective combination of 

these features in a single device allows obtaining unprecedented SHG conversion efficiency. Our 

results shed new light on the optimization of SHG at the nanoscale, paving the way to new classes of 

nanoscale coherent light sources and molecular sensing devices based on nonlinear plasmonic 

platforms. 



The exploitation of low-dimensional structures such as metal films
1
 and nanostructures

2
 to boost

nonlinear optical effects is becoming increasingly crucial in photonics,
3-5

 given its implications on

nonlinear frequency conversion at the nanoscale
6-9

 that can be applied to all-optical signal processing as

well as to life sciences: from local nonlinear phototherapy
10

 to nonlinear sensing, photocatalysis,
11

tagging12 and imaging.13 SHG enhancement through plasmonic nanoantennas is often achieved by 

matching their localized surface plasmon resonance either with the excitation
14,15 

or, more rarely, with

the emission wavelength.
16

 Double-gap nanoantenna designs featuring a doubly-resonant response at

both the excitation and emission wavelengths
17 

have also been proposed, while experimental SHG

boosting has been achieved, to date, through the exploitation of extremely broad plasmonic 

resonances,18 also in combination with Fano-like spectral features.19 These features are often achieved 

by increasing the structure complexity, that eventually limits their scalability and/or increases the 

impact of local defects. 

In this letter we report on the design and realization of a broadly-tunable plasmonic device based on 

coupled gold nanoantennas working in the near-infrared (NIR) (see Figure 1) and featuring multiple 

narrow plasmonic resonances. The investigated antennas exhibit unprecedented SHG efficiency at the 

nanoscale thanks to the fulfillment of specific criteria, namely (i) a multi-resonant response occurring 

at both the excitation and second harmonic (SH) wavelength, (ii) a significant spatial overlap of the 

localized fields at the wavelengths of interest and (iii) a geometry that fosters dipole-allowed SH 

emission. 

First of all, a substantial improvement of SHG efficiency can be achieved by exploiting a multiresonant 

behavior with resonances simultaneously matching both the excitation and the SH wavelength.
17-19

 In

this doubly-resonant regime, SHG can be viewed as a coherent three-step process
20

 (see Fig. 1a) in

which the absorption of two photons at the fundamental wavelength (FW) assisted by a first plasmonic 

mode with energy ħω, is followed by a coherent radiative decay assisted by a second plasmonic mode 

oscillating exactly at twice the energy (2ħω), which restores the system ground state through the 

emission of a SH photon. The overall SHG rate depends on how efficiently the mode at 2ħω couples to 

the SH dipole excited by the electric field at ħω through the nonlinear antenna polarizability. Therefore, 

to improve the efficiency of the process, both plasmonic modes need to be engineered to optimize such 

a coupling, which is also subject to parity and angular momentum conservation rules.
20-22

 Ultimately,

efficient SHG thus requires that the SH dipoles generated by the FW field efficiently overlap with the 

current distribution inside the material associated with the mode responsible for SH emission. Such 

“mode matching”, which in non-centrosymmetric bulk materials corresponds to the well-known phase 



matching conditions, is essential to ensure efficient nonlinear frequency conversion at the nanoscale. In 

practice, for plasmonic antennas, a very good degree of mode overlap is already achieved when the 

involved modes generate field enhancement in the same nanoscale volume. 

Moreover, light-matter interaction at the nanoscale follows a well-known hierarchy, depending on the 

multipole expansion of the electromagnetic field: in the long-wavelength limit λ à a, a being the 

particle size and λ the light wavelength, the transition probability rapidly falls off with increasing order 

of the (electric or magnetic) multipole associated with the transition, with electric multipoles giving 

higher transition rates than magnetic multipoles of the same order. For this reason, the optimization of 

SHG in sub-wavelength particles necessarily requires that all the three transitions indicated in Fig. 1a 

should be electric-dipole-allowed. This condition cannot be satisfied in particles characterized by either 

axial or inversion symmetry, since an electric dipole transition couples states with opposite parity. To 

this aim, one or both modes of the structure need to simultaneously display a pronounced electric 

dipole (odd) and electric quadrupole (or magnetic dipole, both even) character. 

Our nanostructure design is developed using Finite Difference Time Domain (FDTD) simulations 

(FDTD Solutions v 8.9, Lumerical Solutions, Inc., Canada). The geometry of each antenna, as inferred 

from high-resolution SEM images, is discretized by using a mesh with a 2-nm step size. Perfectly-

matched absorbing boundary conditions are employed, while the dielectric constant of Au is taken from 

Ref. 23. The devices consists of two antenna elements closely coupled via a very small gap (see Fig. 

1b): a V-shaped nanoantenna featuring multiple plasmonic resonances24 and a single nanorod. The 

isolated V-shaped antenna displays two main modes,V1 and V2 (see dashed line in Fig. 1c), that can be 

tailored by varying either the angle between the arms, their thickness, and/or their width.
25

 In order to

both achieve optimal frequency overlap and maximize the mode-matching for the excitation and the 

SHG wavelengths, we increase the number of available degrees of freedom by finalizing the device by 

means of a rod-shaped antenna that is coupled to one of the V-shaped antenna arms through a gap of 

about 17 nm (see inset in Fig. 1b). At variance with the recent implementations of rod-shaped antennas 

as passive elements for SHG enhancement in nanoparticle ensembles,
26

 here the nanorod directly

couples with the active structure. As a consequence, by tuning the nanorod first-order longitudinal 

mode to match the SH emission line, hybridization with the V2 mode is achieved, yielding a bonding 

mode, V2
B, and an anti-bonding mode, V2

A (see solid line in Fig. 1c). As it will be shown later, the

parameters of the devised nanoantenna geometry can be easily tailored to exactly match mode V2
A
 with

the expected SHG line without substantially affecting V1. Hence, in the finalized device V1 still 

overlaps with the excitation laser frequency (ω) to enhance absorption, whereas V2
A is tuned at 2ω to



boost the emission process, as illustrated in Fig. 1c. Concurrently, an excellent spatial mode overlap is 

achieved on the structure, as shown by the field enhancement maps in Figure 1d-f. The combination of 

field and charge distributions also indicates that, while mode V2
A
 displays both a quadrupolar behavior

and a strong - horizontal (along the x-axis in Fig. 1d) - dipolar emission, mode V1 is best excited by a 

vertical linear polarization (along the y-axis in Fig. 1f). This is ascribed to the properties of V2 that are 

transferred by the hybridization and, as explained above, constitutes a crucial feature to enable dipole-

allowed coupling of the V2
A
 mode with both the ground state and the electric dipole associated with the

V1 mode. 

We engineered the device for excitation with NIR light at ~ 1560 nm wavelength to achieve SHG 

devices with emission ~ 780 nm, hence in a region where the absorption due to the interband 

transitions in gold is extremely weak. This key-enabling feature, employed only in a limited number of 

experimental approaches so far,
18

 allows minimizing the SHG re-absorption by the metal and may

become crucial in label-free biomedical imaging, given the low NIR absorption of biological tissues at 

these wavelengths.  

Nanoantennas are fabricated from a single-crystalline gold flake via focused ion beam (FIB) milling27, 

which allows realizing narrow and reproducible gap sizes (see the inset of Fig. 1b). The fabrication 

process is reported in Ref. 28. The structure width is designed to be ~ 30 nm while the thickness is set 

by the flake height (~ 40 nm). The ability to realize highly-reproducible structures with uncertainty 

below 10 nm is crucial since it minimizes spurious SHG from defects
14,29,30

 that hinder systematic SHG

efficiency optimization. 

To validate our concept we realize a 6×6 array of nanostructures in which the relevant geometrical 

parameters are systematically varied such that a doubly-resonant antenna is expected to appear at the 

center of the array (see the SEM image in Fig. 2a). We employed dark-field spectroscopy to collect 

linear scattering spectra from each individual antenna. Figure 2b shows the superposition between the 

simulated and the dark-field scattering spectra obtained for the doubly-resonant antenna, emphasizing 

the high level of nanoscale geometrical control achieved with nanofabrication. The excellent 

correlation between design and realization is further evidenced through the comparison of contour plots 

featuring dark-field and calculated scattering spectra acquired on the two most significant array lines 

that cross at the doubly-resonant particle (see Fig. 3a-b and red and green frames in Fig. 2a, 

respectively). The analysis is limited to the visible-NIR region due to the spectrometer sensitivity 

range, however no significant deviations were measured in the NIR through confocal microscopy maps 

at 1550 nm (not shown). The tunability of this device is also demonstrated since, by either varying the 



rod length (Fig. 3a) or the V-shape size (Fig. 3b), the plasmon resonances of interest shift while the 

others are only slightly perturbed. 

We excited the nanoantennas using ultrashort pulses (70-fs, ~ 1560-nm wavelength, 80-MHz repetition 

rate) from an amplified Er:fiber laser (Toptica Photonics AG) coupled to a 1.35 NA oil-immersion 

objective. The pulse width on the sample is estimated to be around 120 fs due to dispersion 

accumulated in the optical path and the laser power at the sample is set to 50 µW, which is low enough 

to exclude any photodamage. The signal is collected through the objective in epi-reflection geometry 

and sent to the detection path via a beam-splitter. To record the intensity maps we filter a region of 

about 40 nm around 780 nm using a narrow band-pass filter; the light is then sent to a single photon 

avalanche photodiode. The sample is mounted on a piezoelectric stage (Physik Instrumente GmbH & 

Co.) which is raster scanned. The signal on each image pixel is integrated for 50 ms and the pixel-size 

is set to 150 nm. 

Figure 4a displays a confocal map of the SHG from the nanostructure array. Sizable SHG is obtained 

for a linear polarization that is vertically aligned to match the V1 mode and higher emission occurs for 

V-shape arm lengths whose resonances lie close to the excitation laser spectrum. This holds true both

for isolated V-shapes (see SEM image in Fig. 4b) and for coupled structures (right and left panels of 

Fig. 4a, respectively). However, when the SH intensity collected from the array of isolated V-shapes is 

compared with the one of the coupled structures, a strong intensity modulation induced by the rod 

presence can be observed. SHG reaches its highest value for rods with a resonance matching the SH 

wavelength, something that cannot be merely attributed to a superposition of the emissions from the 

individual nanostructures, since the SHG signal from the isolated nanorods is undetectable in our 

experimental conditions (not shown). 

We modeled our experimental results by calculating the SHG emitted by the nanostructures using 

frequency-domain Finite Element Methods (FEM). The SH emitted by the nanostructure is numerically 

simulated using a frequency-domain finite-element solver (Comsol Multiphysics, Comsol, Inc., USA). 

Simulations are run following a perturbative approach in the so called undepleted-pump approximation 

(i.e. assuming that the SHG field does not couple back to the excitation field), and considering only the 

dominant contribution due to the free-electron currents normal to the metal surface.31,32 The SHG map 

is created by taking the 6 × 6 array of SHG theoretical values obtained for the each nanostructure in the 

array and convolving it with a Gaussian 2D function with full-width at half-maximum defined by the 

resolution of our setup for SHG (~750 nm). The obtained theoretical 2D SHG map is reported in Fig. 

4c and shows a very good agreement with the experimental map in Fig. 4a. In particular, both the 



experimental and the theoretical map shows a pronounced SHG from the same nanostructure, 

corresponding to the doubly-resonant antenna (indicated by the white arrows in the maps) optimized 

through FDTD simulations (see Fig. 1 and 3). These results demonstrate the effectiveness of our 

approach to deterministically optimize plasmon-enhanced SHG. 

A full polarization analysis of the SH intensity has been performed on the doubly-resonant structure, 

and is reported in the angular plot of Fig. 4d. As expected from SHG selection rules using strongly 

focused beams
21

, the emission behavior is the one of the electric dipole associated with mode V2
A
. This

result also reveals a behavior similar to Type I phase matching in bulk materials, where the SH is 

emitted with a polarization perpendicular to that of the FW. 

By combining a short-pass filter and a high-sensitivity spectrometer, we acquired the entire nonlinear 

emission spectrum of the doubly-resonant particle from 400 to 790 nm. The emitted spectra are 

integrated for about 30 s to compensate for the signal losses due to fiber coupling. Analysis of the 

spectrum reported in Fig. 4e reveals that in our devices Third Harmonic Generation (THG), which in 

nanostructured systems is often by far the dominating nonlinear process,
6
 displays an intensity

comparable to that of SHG. These nanostructures also feature an extremely low two-photon 

photoluminescence yield in this operational wavelength range, ensuring the emission of an almost pure 

coherent radiation. A comparison between the excitation laser spectrum and the SHG one (red and dark 

blue line in Fig. 4e inset, respectively) shows that, while the SH lies exactly at twice the energy of the 

FW, as expected, its bandwidth is slightly narrower than the theoretical value estimated by self-

convoluting the laser spectrum (light blue line). This result further suggests that the SH emission is 

mediated by the nanoantenna plasmonic resonances. 

Once the losses in the detection path of the setup are characterized and accounted for, we estimate that 

up to 3 × 10
6
 photons/s are emitted by the doubly-resonant device, corresponding to a nonlinear

coefficient ���� =
���	

�
�
� ≅ 5 × 10�� W

-1
, PSHG being the SHG detected power and PFW the average

incident power. This value remains constant while varying the incident power over one order of 

magnitude, further indicating the absence of photodamage. The reported value of γSHG is almost 2 

orders of magnitude larger than the one measured in the same experimental conditions from 100-nm-

diameter gold spheres, used as reference structures (not shown), thanks to the extensive nonlinear 

optical characterization available in the literature
15,21,22,31-34

. Recently reported plasmonic structures

featuring either a broadband resonance
18

 or a broken-symmetry geometry,
35

 investigated under similar

experimental conditions, demonstrated efficiencies that are, at best, about one order of magnitude lower 



than ours. This confirms once again that the effective combination of a broken axial symmetry together 

with multiple plasmonic resonances and spatial mode-overlap can significantly boost the SHG process 

at the nanoscale. 

In summary, we conceived and fully-characterized a plasmonic device based on a non-centrosymmetric 

gap antenna that features a by far unprecedented SHG efficiency. This is achieved through the effective 

combination on the same nanostructure of a plasmonic multiresonant character, spatial overlap of the 

plasmonic modes involved in the process and a broken-symmetry geometry. Our results also represent 

the first experimental proof of highly efficient SHG obtained from single-crystal and ultra-smooth 

nanostructures. The high degree of coherence of the light emitted, in the reported wavelength range, 

will allow realizing high-purity sub-wavelength nonlinear coherent sources that can be applied to 

achieve coherent control of light-nanostructure interaction mediated by SHG.
36

 Furthermore, structures

realized using our approach may be used as building blocks in label-free biomedical imaging, given the 

low absorption of biological tissues at both FW and SH wavelengths. Moreover, this concept holds 

promise for enhancing other second order nonlinear processes, i.e. parametric down conversion and 

difference frequency generation, offering new paths in nanoscale quantum-optics through the 

implementation of plasmonic nonlinear logic elements. 
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Figure 1 

Figure 1. a) Scheme of the fundamental dipole transitions involved in the multiresonant plasmon-

induced SHG process. b) Sketch of the engineered nanostructure for SHG enhancement. Inset: SEM 

image of the gap-region revealing a gap-size of about 17 nm. c) Scattering spectra of the isolated V-

shape antenna (black dashed line) and of the coupled structure (black solid line), calculated by FDTD 

using unpolarized incident light. The black solid line also indicates that the coupled particle represents 

a finalized device, since its main modes, V1 and V2
A
, do overlap with the excitation laser (light red

stripe) and the expected SH (light blue stripe) bands, respectively. d-f) Local field and charge 

distributions relative to the structure main resonances. The dipolar modes are oriented along x in (d) 

and (e) and along y in (f). 



Figure 2 

Figure 2. a) SEM image of the 6×6 array of nanostructures under investigation. The rod length 

increases from 80 nm to 155 nm in steps of 15 nm from left to right, while the V-shape half-arm length 

varies from 140 nm to 240 nm in steps of 20 nm from top to bottom. The white square indicates the 

expected doubly-resonant particle. The red rectangle comprises the row in which the rod length varies 

whereas the V-shape maintains an optimized length, while the green rectangle indicates the column in 

which the V-shape single arm changes lengths while the rod maintain an optimized length. b) 

Experimental scattering spectrum of the doubly-resonant nanostructure (red line) and its simulated 

counterpart (blue line). Inset: SEM image of the doubly-resonant nanostructure in the white square of 

panel (a). The additional feature appearing at 690 nm in the calculated spectrum (blue line) refers to a 

higher-order mode in the V-shape antenna. 



Figure 3 

Figure 3. Single nanostructures scattering spectra as a function of the antenna geometry. a) 

Contour plots of the scattering spectra experimentally acquired using dark-field spectroscopy (left) and 

calculated using FDTD (right) in the visible-NIR on the nanostructures in the row indicated by the red 

rectangle in Fig 2a. b) Contour plots of the scattering spectra experimentally acquired using dark-field 

spectroscopy (left) and calculated using FDTD (right) in the visible-NIR on the nanostructures in the 

column indicated by the green rectangle in Fig 2a. The white lines are guides to the eye, to help 

identifying the different modes: V1 (long-dashed line), V2
B
 (medium-dashed line) and V2

A
 (short-

dashed line). The additional feature around 700 nm wavelength in the simulated spectra refers to a 

higher-order mode of the V-shape (see also Fig. 2b). The red and green frames help identifying the 

relative regions in the SEM map in Fig. 2a. The white semi-transparent bands indicate the spectrum of 

the doubly-resonant antenna. 



Figure 4 

Figure 4. a) Left panel: SHG map collected from the array of nanostructures displayed in Fig. 2a. The 

double-headed red arrow indicates the impinging light polarization. Right panel: SHG collected from 

isolated (no coupled rod) V-shape structures with arm length varying from 140 nm to 240 nm (top to 

bottom) in 20-nm steps after excitation with the same polarization as in the left panel. b) SEM image of 

the isolated V-shape structures. c) Left panel: map of the simulated SHG from the same array with light 

polarization as in (a). Right panel: map of the simulated SHG from the array of isolated V-shapes 

presented in (b). d) The experimental polar plot (mirrored top-down) for the SHG collected from the 

resonant nanostructure (see white arrow in (a) and (c)). The double-headed red arrow indicates the 

impinging light polarization. e) Visible-NIR spectrum of the light emitted by the doubly-resonant 

device. The THG peak is centered around 519 nm, while the SHG one is centered at 776 nm. Inset: 

overlap between the SHG peak (dark-blue line) and the excitation laser band (red line). The theoretical 

SHG band obtained by self-convoluting the laser spectrum is also sketched (light-blue line). Horizontal 

scales are expressed in Hz and the experimental and theoretical SHG peaks (FWHM ≅ 7.8 THz and 

10.3 THz respectively) are plotted on a frequency scale which is double the scale of the laser peak 

(FWHM ≅ 10.5 THz). In all measurements the excitation power is set to 50 µW. 
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