192 research outputs found

    The structure of gravel-bed flow with intermediate submergence: a laboratory study

    Get PDF
    The paper reports an experimental study of the flow structure over an immobile gravel bed in open channel at intermediate submergence, with particular focus on the near-bed region. The experiments consisted of velocity measurements using three-component (stereoscopic) Particle Image Velocimetry (PIV) in near-bed horizontal plane and two-component PIV in three vertical planes that covered three distinctly different hydraulic scenarios where the ratio of flow depth to roughness height (i.e., relative submergence) changes from 7.5 to 10.8. Detailed velocity measurements were supplemented with fine-scale bed elevation data obtained with a laser scanner. The data revealed longitudinal low-momentum and high-momentum "strips'' in the time-averaged velocity field, likely induced by secondary currents. This depth-scale pattern was superimposed with particle-scale patches of flow heterogeneity induced by gravel particle protrusions. A similar picture emerged when considering second-order velocity moments. The interaction between the flow field and gravel-bed protrusions is assessed using cross correlations of velocity components and bed elevations in a horizontal plane just above gravel particle crests. The cross correlations suggest that upward and downward fluid motions are mainly associated with upstream-facing and lee sides of particles, respectively. Results also show that the relative submergence affects the turbulence intensity profiles for vertical velocity over the whole flow depth, while only a weak effect, limited to the near-bed region, is noticed for streamwise velocity component. The approximation of mean velocity profiles with a logarithmic formula reveals that log-profile parameters depend on relative submergence, highlighting inapplicability of a conventional "universal'' logarithmic law for gravel-bed flows with intermediate submergence

    IoT sensors for modern structural health monitoring. A new frontier

    Get PDF
    The problem of determining the structural safety level of buildings and civil engineering infrastructures (CEIs) is raising growing concern worldwide. Most of the reinforced concrete constructions have a design life not greater than 100 years, and today it is necessary to face the problem of assessing their level of safety and structural integrity. Such problem is even more pressing when a construction is subjected to extreme environmental conditions. The long-term goal of this study is the realization of wireless low- cost devices, and a data management software, for the structural health monitoring of buildings and CEIs, with remotely controlled sensors embedded in, or installed on, the structural elements, to measure stresses together with accelerations. Once equipped with such system, each construction can become part of the Internet of Things, permitting users and authorities to be alerted in case structural safety is diminished or compromised. A crucial aspect is the unaltered preservation of measurement data over time, which cannot just rely on third parties, and for which it is necessary the exploitation of suitable data-protection technologies. This study have been carried out by experimental testing and validation, both in lab and on site, of the monitoring devices designed and realized. Results show that it is possible to realize low-cost monitoring systems, and related installation techniques, for integration in every new or existing buildings and CEIs

    Permanent monitoring of thin structures with low-cost devices

    Get PDF
    Recently, structural monitoring technology invested in methodologies that give direct information on structures' stress state. Optic fibers, strain gauges, pressure cells give real-time data on the stress condition of a structural element, often determining the area where peak stresses have been reached, with a clear advantage over other less direct monitoring methodologies, such as, e.g., the use of accelerometers and inverse analysis to estimate internal forces. In addition, stresses can be recorded in a data log for analysis after a loading event, as well as for taking into account the lifelong stress state of the structure. Beams and columns of a reinforced concrete frame can be effectively monitored for flexural loads. Differently, thin shells are most of their lifespan under membrane regime, and, when properly designed, they rarely move to the bending regime. Our proposal is to monitor the stress in thin structures by small-sized low- cost devices able to record the stress history at key locations, sending alerts when necessary, with the aim of ensuring safety against the risk of collapse, or simply to perform maintenance/repairing activities. Such devices are realized with cheap off-the-shelf electronics and traditional strain gauges. The application examples are given as laboratory tests performed on a reinforced concrete plate, a masonry panel, and a steel beam. Results shows that the permanent monitoring control of stresses can be conveniently carried out on new structures using low-cost devices of the type we designed and realized in-house

    Immune cells : plastic players along colorectal cancer progression

    Get PDF
    Inflammatory cells are involved in tumour initiation and progression. In parallel, the adaptive immune response plays a key role in fighting tumour growth and dissemination. The double-edged role of the immune system in solid tumours is well represented in colorectal cancer (CRC). The development and progression of CRC are affected by the interactions between the tumour and the host's response, occurring in a milieu named tumour microenvironment. The role of immune cells in human CRC is being unravelled and there is a strong interest in understanding their dynamics as to tumour promotion, immunosurveillance and immunoevasion. A better definition of immune infiltration would be important not only with respect to the 'natural history' of CRC, but in a clinically relevant perspective in the 21st century, with respect to its post-surgical management, including chemotherapy responsiveness. While it is becoming established that the amount of tumour-infiltrating lymphocytes influences the post-surgical progression of early-stage CRC, the relevance of this immune parameter as to chemotherapy responsiveness remains to be clarified. Despite recent experimental work supporting the notion that infiltrating immune cells may influence chemotherapy-mediated tumour cell death, tumour-infiltrating cells are not employed to identify patients who are more likely to benefit from adjuvant treatment. This review focuses on studies addressing the role of innate and adaptive immune cells along the occurrence and the progression of potentially curable CRC

    Epithelial to mesenchymal transition: A challenging playground for translational research. current models and focus on TWIST1 relevance and gastrointestinal cancers

    Get PDF
    Resembling the development of cancer by multistep carcinogenesis, the evolution towards metastasis involves several passages, from local invasion and intravasation, encompassing surviving anoikis into the circulation, landing at distant sites and therein establishing colonization, possibly followed by the outgrowth of macroscopic lesions. Within this cascade, epithelial to mesenchymal transition (EMT) works as a pleiotropic program enabling cancer cells to overcome local, systemic, and distant barriers against diffusion by replacing traits and functions of the epithelial signature with mesenchymal‐like ones. Along the transition, a full‐blown mesenchymal phenotype may not be accomplished. Rather, the plasticity of the program and its dependency on heterotopic signals implies a pendulum with oscillations towards its reversal, that is mesenchymal to epithelial transition. Cells in intermixed E⇔M states can also display stemness, enabling their replication together with the epithelial reversion next to successful distant colonization. If we aim to include the EMT among the hallmarks of cancer that could modify clinical practice, the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers needs to be filled. We review the knowledge on EMT, derived from models and mechanistic studies as well as from translational studies, with an emphasis on gastrointestinal cancers (GI)

    Development and Multicenter Validation of a Novel Immune-Inflammation-Based Nomogram to Predict Survival in Western Resectable Gastric and Gastroesophageal Junction Adenocarcinoma (GEA): The NOMOGAST

    Get PDF
    Background. More than 50% of operable GEA relapse after curative-intent resection. We aimed at externally validating a nomogram to enable a more accurate estimate of individualized risk in resected GEA. Methods. Medical records of a training cohort (TC) and a validation cohort (VC) of patients undergoing radical surgery for c/uT2-T4 and/or node-positive GEA were retrieved, and potentially interesting variables were collected. Cox proportional hazards in univariate and multivariate regressions were used to assess the effects of the prognostic factors on OS. A graphical nomogram was constructed using R software’s package Regression Modeling Strategies (ver. 5.0-1). The performance of the prognostic model was evaluated and validated. Results. The TC and VC consisted of 185 and 151 patients. ECOG:PS > 0 (p < 0.001), angioinvasion (p < 0.001), log (Neutrophil/Lymphocyte ratio) (p < 0.001), and nodal status (p = 0.016) were independent prognostic values in the TC. They were used for the construction of a nomogram estimating 3- and 5-year OS. The discriminatory ability of the model was evaluated with the c-Harrell index. A 3-tier scoring system was developed through a linear predictor grouped by 25 and 75 percentiles, strengthening the model’s good discrimination (p < 0.001). A calibration plot demonstrated a concordance between the predicted and actual survival in the TC and VC. A decision curve analysis was plotted that depicted the nomogram’s clinical utility. Conclusions. We externally validated a prognostic nomogram to predict OS in a joint independent cohort of resectable GEA; the NOMOGAST could represent a valuable tool in assisting decision-making. This tool incorporates readily available and inexpensive patient and disease characteristics as well as immune-inflammatory determinants. It is accurate, generalizable, and clinically effectivex

    Early Detection of Prostate Cancer: The Role of Scent

    Get PDF
    Prostate cancer (PCa) represents the cause of the second highest number of cancer-related deaths worldwide, and its clinical presentation can range from slow-growing to rapidly spreading metastatic disease. As the characteristics of most cases of PCa remains incompletely understood, it is crucial to identify new biomarkers that can aid in early detection. Despite the prostate-specific antigen serum (PSA) levels, prostate biopsy, and imaging representing the actual gold-standard for diagnosing PCa, analyzing volatile organic compounds (VOCs) has emerged as a promising new frontier. We and other authors have reported that highly trained dogs can recognize specific VOCs associated with PCa with high accuracy. However, using dogs in clinical practice has several limitations. To exploit the potential of VOCs, an electronic nose (eNose) that mimics the dog olfactory system and can potentially be used in clinical practice was designed. To explore the eNose as an alternative to dogs in diagnosing PCa, we conducted a systematic literature review and meta-analysis of available studies. PRISMA guidelines were used for the identification, screening, eligibility, and selection process. We included six studies that employed trained dogs and found that the pooled diagnostic sensitivity was 0.87 (95% CI 0.86–0.89; I2, 98.6%), the diagnostic specificity was 0.83 (95% CI 0.80–0.85; I2, 98.1%), and the area under the summary receiver operating characteristic curve (sROC) was 0.64 (standard error, 0.25). We also analyzed five studies that used an eNose to diagnose PCa and found that the pooled diagnostic sensitivity was 0.84 (95% CI, 0.80–0.88; I2, 57.1%), the diagnostic specificity was 0.88 (95% CI, 0.84–0.91; I2, 66%), and the area under the sROC was 0.93 (standard error, 0.03). These pooled results suggest that while highly trained dogs have the potentiality to diagnose PCa, the ability is primarily related to olfactory physiology and training methodology. The adoption of advanced analytical techniques, such as eNose, poses a significant challenge in the field of clinical practice due to their growing effectiveness. Nevertheless, the presence of limitations and the requirement for meticulous study design continue to present challenges when employing eNoses for the diagnosis of PCa

    Cancer initiation and progression: an unsimplifiable complexity

    Get PDF
    BACKGROUND: Cancer remains one of the most complex diseases affecting humans and, despite the impressive advances that have been made in molecular and cell biology, how cancer cells progress through carcinogenesis and acquire their metastatic ability is still widely debated. CONCLUSION: There is no doubt that human carcinogenesis is a dynamic process that depends on a large number of variables and is regulated at multiple spatial and temporal scales. Viewing cancer as a system that is dynamically complex in time and space will, however, probably reveal more about its underlying behavioural characteristics. It is encouraging that mathematicians, biologists and clinicians continue to contribute together towards a common quantitative understanding of cancer complexity. This way of thinking may further help to clarify concepts, interpret new and old experimental data, indicate alternative experiments and categorize the acquired knowledge on the basis of the similarities and/or shared behaviours of very different tumours
    • 

    corecore