398 research outputs found

    An improved fitting algorithm for parametric macromodeling from tabulated data

    Get PDF
    This paper introduces a new scheme for the identification of multivariate behavioral maeromodels from tabulated frequencydomain data. The method produces closed-form parametric expressions that reproduce with excellent accuracy the external port behavior of the structure, both as function of frequency and one or more external parmeters. The numerical robustness of the main algorithm is demonstrated on two significant examples

    A Parameterization Scheme for Lossy Transmission Line Macromodels with Application to High Speed Interconnects in Mobile Devices

    Get PDF
    We introduce a novel parameterization scheme based on the generalized method of characteristics (MoC) formacromodels of transmission-line structures having a cross section depending on several free geometrical and material parameters. This situation is common in early design stages, when the physical structures still have to be finalized and optimized under signal integrity and electromagnetic compatibility constraints. The topology of the adopted line macromodels has been demonstrated to guarantee excellent accuracy and efficiency. The key factors are propagation delay extraction and rational approximations, which intrinsically lead to a SPICE-compatible macromodel stamp. We introduce a scheme that parameterizes this stamp as a function of geometrical and material parameters such as conductor-width and separation, dielectric thickness, and permettivity. The parameterization is performed via multidimensional interpolation of the residue matrices in the rational approximation of characteristic admittance and propagation operators. A significant advantage of this approach consists of the possibility of efficiently utilizing the MoC methodology in an optimization scheme and eventually helping the design of interconnects.We apply the proposed scheme to flexible printed interconnects that are typically found in portable devices having moving parts. Several validations demonstrate the effectiveness of the approac

    On tuning passive black-box macromodels of LTI systems via adaptive weighting

    Get PDF
    This paper discusses various approaches for tuning the accuracy of rational macromodels obtained via black-box identification or approximation of sampled frequency responses of some unknown Linear and Time-Invariant system. Main emphasis is on embedding into the model extraction process some information on the nominal terminations that will be connected to the model during normal operation, so that the corresponding accuracy is optimized. This goal is achieved through an optimization based on a suitably defined cost function, which embeds frequency-dependent weights that are adaptively refined during the model construction. A similar procedure is applied in a postprocessing step for enforcing model passivity. The advantages of proposed algorithm are illustrated on a few application examples related to power distribution networks in electronic system

    Tuning the accuracy of rational macromodels to nominal load conditions

    Get PDF
    We address the generation of broadband macromodels of complex linear systems via rational curve fitting. We show that standard approaches may not ensure that the macromodel accuracy is preserved in system-level simulations, under loading conditions that are different from the adopted identification settings. Our main contribution is an automated procedure for the definition of a frequency-dependent norm weighting strategy that tunes the macromodel accuracy for a specific nominal termination network, thus improving model robustness under realistic operation
    corecore