
05 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Parametric Macromodeling of Multiport Networks from Tabulated Data / Triverio P.; Nakhla M.S.; Grivet-Talocia S.. -
STAMPA. - (2007), pp. 51-54. ((Intervento presentato al convegno IEEE 16Th Topical Meeting on Electrical Performance
of Electronic Packaging (EPEP 2007) tenutosi a Atlanta, GA, USA nel 29-31 Oct. 2007.

Original

Parametric Macromodeling of Multiport Networks from Tabulated Data

Publisher:

Published
DOI:10.1109/EPEP.2007.4387121

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1755387 since:

IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234864145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Parametric Macromodeling of Multiport Networks from Tabulated Data

P. Triveriot, M. S. Nakhlat, S. Grivet-Talociat

tDip. Elettronica, Politecnico di Torino, C. Duca degli Abruzzi 24, 10129 Torino, Italy (e-mail piero. triveriopolito. it)
tElectronics Dept., Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada (e-mail msnrdoe . carleton. ca)

Abstract: We propose a numerical technique to compute, from tabulated frequency data, compact macromodels pa-
rameterized by design variables, to be used for efficient optimization, Montecarlo analysis and design centering of
complex systems. Important theoretical results on the stability of parameter-dependent models are also presented.

1 Introduction and motivation
A proper interconnect design is crucial, in modern digital systems, to achieve high performance and reliable oper-

ation. This task is made difficult because of the ever increasing clock frequencies and integration levels, that enhance
the role played by electromagnetic phenomena. Only if these effects are accurately predicted in all system level simu-
lations, the design can be carried out successfully, and Signal Integrity constraints satisfied.

Nowadays, the most common approach to derive interconnects models for mixed signal simulations is macromod-
eling. Based on the tabulated frequency response of the interconnect parts, obtained via full-wave simulations or direct
measurements, macromodeling algorithms derive efficient and accurate models compatible with standard CAD and
EDA programs.

This approach, very effective for simulation purposes, becomes time consuming for performance optimization,
Montecarlo analysis and design centering procedures, i.e. when simulations must be repeated for different system
parameters. Indeed, each time a design parameter changes, a new measurement or full-wave simulation must be done,
and a new macromodel built "from scratch". To overcome this drawback, it is highly desirable to devise macromodels
parameterized by the design variables, that reproduce the system behavior over the required range of configurations.
In this way, the model identification and the necessary measurements/simulations have to be done only once, before
the optimization or statistical analysis. Then, just a new evaluation of the parametric model coefficients is necessary
to update the macromodel as required by the optimization routine. Motivated by this fact, we propose in this paper an
efficient technique to create parametric models starting from tabulated frequency data.

The paper is organized as follows. In Section 2, a parametric expression suitable for electrical macromodels is
introduced, followed in Section 3 by a numerical algorithm for its identification from tabulated data. Section 4 tack-
les the challenging problem of stability, providing the key mathematical tools to ensure this property over the whole
parameters range, as well as an algorithm to check the stability of parametric models. Finally, in Section 5, an applica-
tion example is reported to highlight the usefulness of these techniques. For clarity, we will focus on a scalar transfer
function dependent on one parameter. However, all results hold for multiport systems dependent on several parameters.

2 Parameter-dependent macromodels
Problem statement. We consider a single-input single-output system dependent on a parameter A, which varies1

in the interval [A, A]. Its response is known at the frequency points w1,i.. , wk and for several values A1,.l. , A1 of the
parameter, spread in the interval [A, A]. We denote the available samples as

Hkl k= l,...,ik I 1=1,...,1 (1

with Hkl being the value of the system response for w = Wk and A = A1. We aim at constructing a rational macromodel
H(s, A) that well reproduces the original system response (1) uniformly in the frequency band [Wi, wk] and in the
parameter range [A, A].

Model formulation. Our first step is to identify a good expression for the parametric model that can accurately
follow the parameter variation with a small number of coefficients. Since macromodels are often written in poles-
residues form, it would be tempting to parameterize these quantities. However, the variation of the poles induced
by the parameter may be very odd and cumbersome to fit. We argue a better approach by recalling a general result
on lumped networks. If we denote a generic element (either a capacitor, inductor or resistor) as A we know [1] that

1As a general notation, we denote the minimum and maximum values of a quantity x as x and x, respectively.
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H(s, A) is expressed as the ratio of two polynomials

H())=En=O qn (A)S 2

where the coefficients Qn (A) and qn (A) are always linear functions of A. Therefore, if (2) is used instead of the
poles-residues form, a large class of systems can be described, independently of the network order and complexity,
even with a simple linear parameterization. Although a similar result cannot be claimed for a generic parameter (e.g.
geometrical dimensions, temperature), it is clear that the coefficients of the form (2) are preferred candidates for the
parameterization scheme. We therefore adopt this form as the expression for our parametric model, with Qn(A) and
qn (A) being polynomials of degree fmi. The macromodel can thus be expressed as

H(s, A) - En(QIo + Qn A + QnmAm)sn En Em QnmVnmQs( A) nm(s, A) = Ammsn (3)
1n(qno + qnA +± qnAmA)sn En Em qnmV'nm(s, A)

where {lOnm(s, A)} denotes the polynomial basis used to represent the numerator and the denominator. Throughout
this work, the range of variation for n and m is assumed to be, respectively, n O, ... , ni and m O,.... , m.

3 The parametric Sanathanan-Koerner iteration
We now develop a realible algorithm to estimate the coefficients Qnm and qnm of the model (3) in order to fit the

given data (1), i.e., to numerically minimize the modeling error S defined as

k I

£2 - IIH(jwk, A1) Hkl 112 Z=ZI H(jwk, Al) Hkl 12 (4)
k=1 1=1

This task presents two main difficulties: (i) the strong ill-conditioning due to the high order powers of s in (3), and (ii)
the nonlinear dependence of the error in the unknowns qnm of the model denominator. In the identification of standard,
non-parametric models, Vector Fitting (VF) [2] can be used to overcome these problems. Unfortunately, it cannot be
easily extended to the parametric case, because a parameterization of the model poles would be required. However, VF
has been recently recognized as a smart reformulation of the classical Sanathanan-Koerner iteration (SK) [3], which
instead can be extended to the parametric case as follows.

First, we avoid the high powers of s by expressing the model (3) with a new basis ,nm (s, A)

H(, A)_ N(s,A) EnZEmRnm nm(S,A)A)( A) fAm forn 0(
D(s, A) jEn Em rnmq3nm (s, A) nm S, l A for n 00

The obtained expression is equivalent to (3), but much more suitable for numerical computations. The new basis
q$nm (s, A) is essentially the combination of a polynomial basis {1, A, . .. , Am} for the parameter and the Vector Fitting
basis {1, (s- a,)-, . .. (s- a)-1} for frequency. The quantities an will be referred as basis poles and are fixed a
priori. Then, we exploit the SK iteration to minimize the modeling error

g2 =|D-1(jWk Al) [N(jwk,A) -D(iwk,Aj)Hklj |2, (6)
which is non-linear in the unknowns of D- (jwk, Al). To circumvent this problem the SK method estimates D(s, A)
iteratively by minimizing the linearized error

£E2= j() [N()(jWk, A1) - D()(jWk, AI)Hkl] 2 - [D (jwk, Al)] , (7)

where the weight w(i) plays the role of the factor D-1(jwk, A1) in (6), and is obtained from the previous estimate of
the denominator. As the iterations go, the weight makes (7) progressively close to the original error (6). Since this new
minimization problem is linear in the coefficients of N(i) (jwk, A1) and D (jwk, A1), it can be solved with the efficient
algorithms for linear least-squares equations. At the first iteration (i 1l) the weight w() is set to unity for all k and
I values. To enhance the accuracy and convergence speed of the iteration, the basis poles an are chosen close to the
poles of the real system by applying VF to one of the available responses.

Multiparameter case. We now briefly discuss how the proposed technique can be extended to the multiple
parameters case. For clarity, let us consider two parameters A and [t only. If they are component values in a lumped
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network, the coefficients of (2) are known to be multiaffine2 functions of A and ,u, i.e. in the form q(A, /u) = qoo +
qloA + qo1 L + q1A/-L. In the light of this property, a suitable basis for the generalization of (5) to the multivariate case
is

(Aml Pum2 forn-0 n 0)..,-n
nmm(31,Alii) <Almnm,rM2 ( \Mll = { forn #0 m2 0,.. ,m2 (8)

4 Stability of parametric models
The parametric SK iteration developed in Section 3 does not guarantee the model stability. The main difficulty

towards this goal is that, for parametric models, stability must be uniformly ensured over a continuous set [A, A]. Com-
putationally tractable conditions must therefore be devised. Without them, fitting techniques with stability constraints
cannot be derived, and only a rough check of the model stability can be performed with a sweep of the parameter.

Let us consider the model (5): its poles are given by the zeros of D(s, A), since the basis poles an are common
between the numerator and the denominator, and so cancel out. By direct substitution of the basis Onm (s, A), D(s, A)
can be written as

D(s, A) = ro(A) + c(A) (sI - A) 1 b rn (A) = Em rnmAm, b [1,... , 1]T (size n x 1), (9)
c(A) = [,r (A) ... , rn (A)], A = diag(an)

and its zeros computed as the eigenvalues of the matrix [4]

A(A) = [ro(A)A -bc(A)]/ro(A). (10)

Therefore, (5) is stable if and only if A(A) is a stable matrix, having all eigenvalues in the strict half plane lRte {s} < 0.
The stability of parametric matrices like (10) has been analyzed in the robust control literature. For the case of degree
mi < 1, the following necessary and sufficient stability condition exists [5].

Theorem 1 Ifro (A) is not vanishing3 in [A, A], A(A) is stablefor all A C [A, A] if and only if a symmetric and positive
definite matrix P exists such that

AT(A)P+ PA(A) < , AT(A)P+ PA(A) < 0. (11)

The linear matrix inequalities (LMIs) in (11) are basically the Lyapunov equation for A(A) at the extremes of the in-
terval [A, A]. Since LMIs can be efficiently solved with convex optimization techniques, this theorem directly allows to
numerically ascertain the uniform stability of (5). The scope of this crucial result is however much broader, since it re-
duces the complexity of the parametric stability condition to a computationally tractable level. In this paper Theorem 1
has been restricted to one parameter. Its extension to the multiparameter case can be found in [5].

For models with degree higher than one (i > 1) a similar result involving only the extremes of the parameter range
cannot exist [6]. Anyway, several sufficient conditions for stability have been proposed, like those derived in [5]. The
analysis of these results will be discussed in a future work.

5 Illustrative example
A two-port circuit composed by two microstrip lines and a resistor-capacitor pair is considered, depicted in Figure 1.

This configuration idealizes a 5 cm interconnect link loaded by a device, here represented by the resistor-capacitor
group. The nominal features of the components are: Rf 4 kQ, C = 0.2 pF, microstrips width w - 80 ,um, lengths
11 - 3 cm and 12 = 2 cm, dielectric height h = 0.3 mm, dielectric permittivity cr - 4. The proposed technique
was applied to derive two parameterized models suitable to analyze the effects of some components parameters on the
2-ports link.

The microstrips width w was first taken as design parameter, variable between 60 and 130 sm. The 2 x 2 scattering
matrix of the circuit was computed for 100 points from 10 MHz to 10 GHz, and for 15 different values of w between
60 and 130 ,um, at steps of 5 ,um. For the sake of simplicity the per-unit-length parameters of the lines were computed
with standard Wheeler's formulas, while in a real design scenario a 2D electromagnetic simulator would have been
used. Among the 15 responses, those for w - 60, 70,.. .,130,um were used to construct the parametric model, and
the others to verify, a posteriori, the approximation quality for intermediate values of w. In the left panel of Figure 2,
the magnitude of S21 for a parametric model of order 16 and degree m - 3 is depicted, together with the exact system

2A function of A and ,u is multiaffine if it is linear in A with ,u constant, and viceversa.
3This hypothesis is verified if and only if ro(A) and ro(A) have the same sign [6].
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Portl1 R 12 Port2

Figure 1: Test circuit analyzed in the example.

response. A very good agreement can be observed: in fact, the maximum modeling error among the S parameters was
found to be 1.3 x 10-3 (absolute) and 0.8% (relative). Two SK iterations were required to identify the model, each one
taking just 2 s. Since the model degree is higher than one, the model stability could not be ascertained with Theorem 1,
so a parameter sweep was used. The model turned out to be stable.

The second test case considered R and C as parameters. Since they are values of lumped components, a model of
degree one for both of them was expected to be sufficient, even for large parameters variations. The ranges for R and C
were chosen as [0.1, 10] kQ and [0.1, 0.9] pF, respectively. The circuit S matrix was computed for nine values ofR and
nine of C. Out of the 81 obtained datasets, only 9 corresponding to Rf 0.1, 1, 10 kQ and C = 0.1, 0.5, 0.9 pF were
used for the model identification. The right panel of Figure 2 shows the very good match of the model response with
the data, for the real part of the Sll coefficient. The maximum absolute and relative errors between the model and the
true system response are 8 x 10-5 and 0.1% respectively. The estimated model, of order 18 and unitary degree mT in
both R and C, was computed in only 11 s with two SK iterations. The application of the uniform stability test devised
in Section 4 ascertained that the computed model is stable for all parameter values.

0- 1 2 3 4 57 8 9 10 1 2 3.4.5.
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Figure 2: Left: Magnitude of the S21 response of the test circuit (solid line) and of the macromodel (dash-dot line) for
different values of the microstrip width w. Right: Real part of the Sl1 coefficient of the true system (solid line) and of
the model (dash-dot line) for different values ofR and C (for clarity, only some validation responses are shown).

6 Conclusion
A numerical method has been proposed to compute parameterized macromodels of multiport systems characterized

by tabulated frequency data. The algorithm provides, with low computational cost, accurate multiparameter models for
fast optimizations and statistical analysis. While the model stability is not always guaranteed, the mathematical tools
to address this tough point have been provided. The theoretical framework of this paper will constitute a good basis for
future research on parameterized macromodeling.
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