20 research outputs found

    Identification of standing fronts in steady state fluid flows: exact and approximate solutions for propagating MHD modes

    Get PDF
    International audienceThe spatial structure of a steady state plasma flow is shaped by the standing modes with local phase velocity exactly opposite to the flow velocity. The general procedure of finding the wave vectors of all possible standing MHD modes in any given point of a stationary flow requires numerically solving an algebraic equation. We present the graphical procedure (already mentioned by some authors in the 1960's) along with the exact solution for the Alfvén mode and approximate analytic solutions for both fast and slow modes. The technique can be used to identify MHD modes in space and laboratory plasmas as well as in numerical simulations

    Planetary Exploration Horizon 2061 Report, Chapter 3: From science questions to Solar System exploration

    Full text link
    This chapter of the Planetary Exploration Horizon 2061 Report reviews the way the six key questions about planetary systems, from their origins to the way they work and their habitability, identified in chapter 1, can be addressed by means of solar system exploration, and how one can find partial answers to these six questions by flying to the different provinces to the solar system: terrestrial planets, giant planets, small bodies, and up to its interface with the local interstellar medium. It derives from this analysis a synthetic description of the most important space observations to be performed at the different solar system objects by future planetary exploration missions. These observation requirements illustrate the diversity of measurement techniques to be used as well as the diversity of destinations where these observations must be made. They constitute the base for the identification of the future planetary missions we need to fly by 2061, which are described in chapter 4. Q1- How well do we understand the diversity of planetary systems objects? Q2- How well do we understand the diversity of planetary system architectures? Q3- What are the origins and formation scenarios for planetary systems? Q4- How do planetary systems work? Q5- Do planetary systems host potential habitats? Q6- Where and how to search for life?Comment: 107 pages, 37 figures, Horizon 2061 is a science-driven, foresight exercise, for future scientific investigation

    Simulations of the interaction of the solar wind with planetary magnetospheres : from Mercury to Uranus, the part of the planetary rotation

    No full text
    La thĂšse porte sur le rĂŽle de la rotation planĂ©taire dans la structure globale de l'interaction vent solaire/magnĂ©tosphĂšre Ă  partir de simulations magnĂ©tohydrodynamiques (MHD). Les magnĂ©tosphĂšres planĂ©taires du systĂšme solaire prĂ©sentent une incroyable diversitĂ©, et notamment dans leurs configurations respectives de l'inclinaison de leur axe magnĂ©tique par rapport Ă  leur axe de rotation. La durĂ©e des pĂ©riodes de rotation par rapport au temps de relaxation de chaque magnĂ©tosphĂšre diffĂšre aussi d'une planĂšte Ă  l'autre. On distingue ainsi les rotateurs lents (Mercure et la Terre), pour lesquels le temps de relaxation est plus court que la pĂ©riode de rotation, des rotateurs rapides (Jupiter, Saturne, Uranus et Neptune). Dans le cas du rotateur lent Mercure, on s'intĂ©resse Ă  l'influence des paramĂštres du vent solaire sur la structure globale du champ magnĂ©tique et de l'Ă©coulement. En appui Ă  la mission spatiale BepiColombo, nous prĂ©sentons des simulations effectuĂ©es pour deux modĂšles diffĂ©rents de champ magnĂ©tique hermĂ©en. Nous dĂ©taillons le rĂŽle des fronts d'onde MHD stationnaires, en particulier les fronts stationnaires de mode lent dans la magnĂ©togaine. Saturne prĂ©sente la particularitĂ© d'avoir un axe magnĂ©tique parfaitement alignĂ© avec son axe de rotation. C'est donc un cas de rotateur rapide stationnaire, qui nous permet d'Ă©tudier la structure globale du champ magnĂ©tique et de l'Ă©coulement pour diffĂ©rentes orientations de l'IMF, mais aussi pour diffĂ©rentes vitesses de rotation de la planĂšte. Enfin, le cas d'une configuration quelconque, avec un grand angle entre l'axe magnĂ©tique et l'axe de rotation planĂ©taire, est Ă©tudiĂ© en prĂ©sence d'un vent solaire magnĂ©tisĂ© en s'inspirant de la configuration d'Uranus au solstice et Ă  l'Ă©quinoxe. Dans la configuration « solstice », c'est Ă  dire lorsque l'axe de rotation pointe vers le Soleil, on montre qu'une structure de nature alfvĂ©nique se dĂ©veloppe en hĂ©lice dans la queue de la magnĂ©tosphĂšre, et que les zones de reconnexion entre le champ magnĂ©tique planĂ©taire et l'IMF, qui forment aussi une double hĂ©lice, ralentissent la progression de la structure alfvĂ©nique. A l'Ă©quinoxe, lorsque l'axe de rotation est toujours dans le plan de l’écliptique mais perpendiculaire Ă  la direction Soleil-Uranus, la structure en hĂ©lice disparaĂźt.The topic of the thesis is the part of planetary rotation in the global structure of the solar wind interaction with planetary magnetospheres using MHD simulations. We discuss the distinction between slow and fast rotators from a MHD point of view. In the case of a non-rotating magnetosphere (as is the one of Mercury), the part of standing MHD modes is studied, along with a method to identify them in simulations. A fast-rotating but stationary magnetosphere (inspired by the case of Saturn) is presented in details and provides a good test to validate the new version of the AMRVAC code allowing for any configuration regarding the respective directions of the planetary spin axis, planetary magnetic axis, solar wind inflow direction, and IMF orientation. Finally, a random configuration, with a large angle between the planetary spin and magnetic axis, is analyzed for the first time in presence of a magnetized solar wind, using configurations inspired from the planet Uranus at solstice and equinox

    Simulations de l’interaction du vent solaire avec des magnĂ©tosphĂšres planĂ©taires : de Mercure Ă  Uranus, le rĂŽle de la rotation planĂ©taire

    Get PDF
    The topic of the thesis is the role of planetary rotation in the global structure of the solar wind interaction with planetary magnetospheres using MHD simulations. In the Solar System, planetary magnetospheres present a wide diversity due to the various configurations of their planetary magnetic and spin axis. We discuss the distinction between slow and fast rotators from a MHD point of view.In the case of a non-rotating magnetosphere (as is the one of Mercury), we use simulations to identify the respective role of the solar wind parameters in the global structure of the plasma flow and magnetic field. In support of the BepiColombo mission, we also run simulations for two different planetary field models.The role of standing MHD modes is studied, along with a method to identify them in simulations. A fast-rotating but stationary magnetosphere, with the planetary magnetic and spin axis aligned (an example of this confiuration is Saturn) is presented in details. We worked on the influence of IMF (Interplanetary Magnetic Field) orientation and planetary angular velocity on the global structure of the magnetosphere. Finally, a random configuration, with a large angle between the planetary spin and magnetic axis, is analyzed for the first time in presence of a magnetized solar wind, using configurations inspired from the planet Uranus at solstice and equinox. In the solstice configuration, i.e. when the spin axis points to the Sun, a structure of alfvenic nature forms a helix in the magnetotail and reconnection sites between the IMF and the planetary field also form a double helix and slow down the magnetic structure. At equinox, when the pin axis is perpendicular to the Sun-Uranus direction, the helix structures disappear.La thĂšse porte sur le rĂŽle de la rotation planĂ©taire dans la structure globale de l’interaction vent solaire/magnĂ©tosphĂšre Ă  partir de simulations magnĂ©tohydrodynamiques (MHD). Dans le SystĂšme solaire, les magnĂ©tosphĂšres planĂ©taires prĂ©sentent une incroyable diversitĂ© dans leurs configurations respectives de l’inclinaison de l’axe magnĂ©tique par rapport Ă  l’axe de rotation. D’autre part, on distingue les rotateurs lents (Mercure, la Terre, Uranus et Neptune), pour lesquels le temps de relaxation est plus court que la pĂ©riode de rotation, des rotateurs rapides (Jupiter, Saturne).Dans le cas du rotateur lent Mercure, on s’intĂ©resse Ă  l’influence des paramĂštres du vent solaire sur la structure globale du champ magnĂ©tique et de l’écoulement. En appui Ă  la mission spatiale BepiColombo, nous prĂ©sentons des simulations effectuĂ©es pour deux modĂšles diffĂ©rents de champ magnĂ©tique hermĂ©en. Nous dĂ©taillons le rĂŽle des fronts d’onde MHD stationnaires, en particulier les fronts stationnaires de mode lent dans la magnĂ©togaine. Saturne prĂ©sente la particularitĂ© d’avoir un axe magnĂ©tique parfaitement alignĂ© avec son axe de rotation. C’est donc un cas de rotateur rapide stationnaire, qui nous permet d’étudier la structure globale du champ magnĂ©tique et de l’écoulement pour diffĂ©rentes orientations de l’IMF (“Interplanetary Magnetic Field"), mais aussi pour diffĂ©rentes vitesses de rotation de la planĂšte. Enfin, le cas d’une configuration quelconque,avec un grand angle entre l’axe magnĂ©tique et l’axe de rotation planĂ©taire, est Ă©tudiĂ© en prĂ©sence d’un vent solaire magnĂ©tisĂ© en s’inspirant de la configuration d’Uranus au solstice et Ă  l’équinoxe. Dans la configuration “solstice", c’est Ă  dire lorsque l’axe de rotation pointe vers le Soleil, on montre qu’une structure de nature alfvĂ©nique se dĂ©veloppe en hĂ©lice dans la queue de la magnĂ©tosphĂšre, et que les zones de reconnexion entre le champ magnĂ©tique planĂ©taire et l’IMF, qui forment aussi une double hĂ©lice, ralentissent la progression de la structure magnĂ©tique. A l’équinoxe, lorsque l’axe de rotation est toujours dans le plan de l’écliptique mais perpendiculaire Ă  la direction Soleil-Uranus, la structure en hĂ©lice disparaĂźt

    Coronal Bright Points as Possible Sources of Density Variations in the Solar Corona

    No full text
    International audienceRecent analysis of high-cadence white-light images taken by the Solar-Terrestrial RElations Observatory near solar maximum has revealed that outflowing density structures are released in a ubiquitous manner in the solar wind. The present study investigates whether these density fluctuations could originate from the transient heating of the low corona observed during coronal bright points (CBPs). We assume that part of the intense heating measured during CBPs occurs at the coronal base of open magnetic fields that channel the forming solar wind. We employ the solar wind model MULTI-VP to quantify the plasma compression induced by transient heating and investigate how the induced perturbation propagates to the upper corona. We show that for heating rates with statistics comparable to those observed during CBPs, the compressive wave initially increases the local plasma density by a factor of up to 50% at 5 R e. The wave expands rapidly beyond 30 solar radii and the local enhancement in density decreases beyond. Based on the occurrence rates of CBPs measured in previous studies, we impose transient heating events at the base of thousands of open magnetic field lines to study the response of the entire 3D corona. The simulated density cubes are then converted into synthetic white-light imagery. We show that the resulting brightness variations occupy all position angles in the images on timescales of hours. We conclude that a significant part of the ubiquitous brightness variability of the solar corona could originate in the strong transient heating of flux tubes induced by CBPs

    First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe /FIELDS

    No full text
    International audienceHeat transport in the solar corona and wind is still a major unsolved astrophysical problem. Because of the key role played by electrons, the electron density and temperature(s) are important prerequisites for understanding these plasmas. We present such in situ measurements along the two first solar encounters of the Parker Solar Probe, between 0.5 and 0.17 au from the Sun, revealing different states of the emerging solar wind near the solar activity minimum. These preliminary results are obtained from a simplified analysis of the plasma quasi-thermal noise (QTN) spectrum measured by the Radio Frequency Spectrometer (FIELDS). The local electron density is deduced from the tracking of the plasma line, which enables accurate measurements, independent of calibrations and spacecraft perturbations, whereas the temperatures of the thermal and suprathermal components of the velocity distribution, as well as the average kinetic temperature, are deduced from the shape of the plasma line. The temperature of the weakly collisional thermal population, similar for both encounters, decreases with the distance as R-0.74, which is much slower than adiabatic. In contrast, the temperature of the nearly collisionless suprathermal population exhibits a virtually flat radial variation. The 7 s resolution of the density measurements enables us to deduce the low-frequency spectrum of compressive fluctuations around perihelion, varying as f(-1.4). This is the first time that QTN spectroscopy is implemented with an electric antenna length not exceeding the plasma Debye length. As PSP will approach the Sun, the decrease in the Debye length is expected to considerably improve the accuracy of the temperature measurements
    corecore