137 research outputs found

    WONOEP appraisal: New genetic approaches to study epilepsy

    Get PDF
    New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming, and optogenetic manipulations within epileptic networks are progressively unraveling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiologic effects of mutations in epilepsy associated genes on a multilayer level, from cells to circuits. This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy (WONOEP 2013) in Quebec, Canada. Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and has revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knock-down approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type–specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. In addition, genetically encoded cell-type labeling is providing new means to assess the role of the nonneuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and noncoding ribonucleic acid (RNA) involved in modifying gene expression following seizures. In addition, genetically based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient induced pluripotent stem cells and genetically modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Genetics has changed the field of epilepsy research considerably, and is paving the way for better diagnosis and therapies for patients with epilepsy

    WONOEP appraisal: New genetic approaches to study epilepsy

    Get PDF
    New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming, and optogenetic manipulations within epileptic networks are progressively unraveling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiologic effects of mutations in epilepsy associated genes on a multilayer level, from cells to circuits. This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy (WONOEP 2013) in Quebec, Canada. Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and has revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knock-down approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type–specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. In addition, genetically encoded cell-type labeling is providing new means to assess the role of the nonneuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and noncoding ribonucleic acid (RNA) involved in modifying gene expression following seizures. In addition, genetically based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient induced pluripotent stem cells and genetically modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Genetics has changed the field of epilepsy research considerably, and is paving the way for better diagnosis and therapies for patients with epilepsy

    The active metabolite of leflunomide, A77 1726, interferes with dendritic cell function

    Get PDF
    Leflunomide, a potent disease-modifying antirheumatic drug used in the treatment of rheumatoid arthritis (RA), exhibits anti-inflammatory, antiproliferative and immunosuppressive effects. Although most of the beneficial effects of leflunomide have been attributed to its antimetabolite activity, mainly in T cells, other targets accounting for its potency might still exist. Because of mounting evidence for a prominent role of dendritic cells (DCs) in the initiation and maintenance of the immune response in RA, we analyzed the effect of the active metabolite of leflunomide (A77 1726; LEF-M) on phenotype and function of human myleloid DCs at several stages in their life cycle. Importantly, DCs differentiated in the presence of LEF-M exhibited an altered phenotype, with largely reduced surface expression of the critical co-stimulatory molecules CD40 and CD80. Furthermore, treatment of DCs during the differentiation or maturation phase with LEF-M aborted successful DC maturation. Exogenous addition of uridine revealed that DC modulation by LEF-M was independent of its proposed ability as an antimetabolite. In addition, the ability of DCs to initiate T-cell proliferation and to produce the proinflammatory cytokines IL-12 and tumour necrosis factor-α was markedly impaired by LEF-M treatment. As a molecular mechanism, transactivation of nuclear factor-κB, an transcription factor essential for proper DC function, was completely suppressed in DCs treated with LEF-M. These data indicate that interference with several aspects of DC function could significantly contribute to the beneficial effects of leflunomide in inflammatory diseases, including RA

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    Baseline new bone formation does not predict bone loss in ankylosing spondylitis as assessed by quantitative computed tomography (QCT) - 10-year follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the relationship between bone loss and new bone formation in ankylosing spondylitis (AS) using 10-year X-ray, dual-energy x-ray absorptiometry (DXA) and quantitative computed tomography (QCT) follow-up.</p> <p>Methods</p> <p>Fifteen AS patients free from medical conditions and drugs affecting bone metabolism underwent X-ray, DXA and QCT in 1999 and 2009.</p> <p>Results</p> <p>In spine QCT a statistically significant (p = 0,001) decrease of trabecular bone mineral content (BMC) was observed (change ± SD: 18.0 ± 7.3 mg/cm<sup>3</sup>). In contrast, spine DXA revealed a significant increase of bone mineral density (change ± SD: -0.15 ± 0.14 g/cm<sup>2</sup>). The mean BMC, both at baseline and follow-up was significantly lower (p = 0.02 and p = 0.005, respectively) in advanced radiological group as compared to early radiological group. However, in multiple regression model after adjustment for baseline BMC, the baseline radiological scoring did not influence the progression of bone loss as assessed with QCT (p = 0.22, p for BMC*X-ray syndesmophyte scoring interaction = 0.65, p for ANOVA-based X-ray syndesmophyte scoring*time interaction = 0.39). Baseline BMC was the only significant determinant of 10-year BMC change, to date the longest QCT follow-up data in AS.</p> <p>Conclusions</p> <p>In AS patients who were not using antiosteoporotic therapy spine trabecular bone density evaluated by QCT decreased over 10-year follow-up and was not related to baseline radiological severity of spine involvement.</p

    Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most distinctive features of ankylosing spondylitis (AS) is new bone formation and bone resorption at sites of chronic inflammation. Previous studies have indicated that the hyperplasia and inflammation of synovial tissues are significantly related to the pathogenic process of AS. The present study used a proteomic approach to identify novel AS-specific proteins by simultaneously comparing the expression profiles of synovial membranes from patients with AS, rheumatoid arthritis (RA) and osteoarthritis (OA).</p> <p>Methods</p> <p>Synovial tissues were collected from the hip joints of patients with AS and knee joints of patients with RA or OA (n = 10 for each disease) during joint replacement surgery. Proteins extracted from the synovial tissues were separated by 2-D electrophoresis (2-DE), and the proteins with significantly increased expression in the AS samples were subjected to MALDI-TOF/TOF-MS analysis. The results were verified using western blotting and immunohistochemistry. Levels of the candidate proteins in synovial fluids from knee joints (n = 40 for each disease) were measured using ELISA.</p> <p>Results</p> <p>The proteomic approach revealed significantly increased expression of carbonic anhydrase I (CA1) in the synovial membrane of patients with AS as compared with the RA and OA tissue samples. Immunohistochemistry and western blotting analysis confirmed the findings described above. The ELISA detected a higher level of CA1 in synovial fluids from patients with AS than those with OA. The mean value of the CA1 level was also higher in AS patients as compared with RA patients. This study also detected increased expression of alpha-1-antitrypsin in the synovial tissues from AS patients, which is in agreement with other reports.</p> <p>Conclusion</p> <p><it>In vitro </it>experiments by other groups indicated that CA1 catalyzes the generation of HCO<sub>3</sub><sup>- </sup>through the hydration of CO<sub>2</sub>, which then combines with Ca<sup>2+ </sup>to form a CaCO3 precipitate. Calcification is an essential step of bone formation. Substantial evidence indicates that carbonic anhydrase also stimulates bone resorption. Hence, overexpression of CA1 in the synovial tissues of AS patients may promote improper calcification and bone resorption in AS.</p

    Endothelial Progenitor Cells, Cardiovascular Risk Factors, Cytokine Levels and Atherosclerosis – Results from a Large Population-Based Study

    Get PDF
    EPC number and functionality are assumed to reflect the endogenous vascular repair capacity with the EPC pool declining in higher ages and being exhausted by unfavorable life-style and risk factors. This intriguing and clinically highly relevant concept, however, has so far been derived from small case-control studies and patient series.In the population-based Bruneck Study EPC number and EPC-colony forming units (EPC-CFU) were assessed as part of the fourth follow-up evaluation (2005) in 571 and 542 subjects, respectively. EPC number declined with age (p = 0.013), was significantly lower in women (p = 0.006) and higher in subjects on statin, hormone replacement or ACE inhibitor/angiotensin-receptor blockers, and correlated positively with moderate alcohol consumption. Unexpectedly, a positive relation between EPC number and several vascular risk factors emerged. In a step forward multivariate linear regression analysis EPC number was independently related with SDF1alpha, MMP-9, triglycerides, alcohol consumption, and Hba1c. EPC-CFU in turn was related to SDF1alpha and diastolic blood pressure. Moreover, EPC number showed a significant positive association with the Framingham risk score (P = 0.001). Finally, there was an inverse association between EPC number and common carotid artery intima-media thickness (p = 0.02) and the carotid artery atherosclerosis score (p = 0.059).Our population-based data confirm the decline of EPC number with advancing age and lend first epidemiological support to a role of SDF-1alpha and MMP9 in EPC differentiation, mobilization and homing, but are conflict with the view that EPC number is unfavorably affected by cardiovascular risk factors. EPC number increases with the cardiovascular risk estimated by the Framingham risk score (FRS), which in the absence of similar changes for EPC-CFU. Finally, we demonstrate a significant inverse association between EPC number and extent of carotid atherosclerosis even though this association was only of moderate strength and not entirely consistent in other vascular territories
    corecore