9 research outputs found
A variant of KCC2 from patients with febrile seizures impairs neuronal Cl- extrusion and dendritic spine formation
Genetic variation in SLC12A5 which encodes KCC2, the neuronâspecific cationâchloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a coâsegregating variant (KCC2âR952H) in an Australian family with febrile seizures. We show that KCC2âR952H reduces neuronal Clâ extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2âR952H which likely contributes to the functional deficits. Our data suggest that KCC2âR952H is a bona fide susceptibility variant for febrile seizures.Peer reviewe
A variant of KCC2 from patients with febrile seizures impairs neuronal Cl- extrusion and dendritic spine formation
Genetic variation in SLC12A5 which encodes KCC2, the neuronâspecific cationâchloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a coâsegregating variant (KCC2âR952H) in an Australian family with febrile seizures. We show that KCC2âR952H reduces neuronal Clâ extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2âR952H which likely contributes to the functional deficits. Our data suggest that KCC2âR952H is a bona fide susceptibility variant for febrile seizures.Peer reviewe
Liquid Serial Dilution Is Inferior to Solid Media for Isolation of Cultures Representative of the Phylum-Level Diversity of Soil Bacteria
Representatives of only four well-characterized bacterial phyla were isolated from a pasture soil by using liquid serial dilution culture. In contrast, members of Acidobacteria, Verrucomicrobia, and Gemmatimonadetes and of other poorly represented bacterial lineages were isolated in earlier experiments with solidified versions of the same media. We conclude that, contrary to expectation, liquid serial dilution culture is inferior to culturing on solid media for isolating representatives of many bacterial phyla from soil
A founder event causing a dominant childhood epilepsy survives 800 years through weak selective pressure
Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial epilepsy syndrome characterized by distinctive phenotypic heterogeneity within families. The SCN1B c.363C>G (p.Cys121Trp) variant has been identified in independent, multi-generational families with GEFS+. Although the variant is present in population databases (at very low frequency), there is strong clinical, genetic, and functional evidence to support pathogenicity. Recurrent variants may be due to a founder event in which the variant has been inherited from a common ancestor. Here, we report evidence of a single founder event giving rise to the SCN1B c.363C>G variant in 14 independent families with epilepsy. A common haplotype was observed in all families, and the age of the most recent common ancestor was estimated to be approximately 800 years ago. Analysis of UK Biobank whole-exome-sequencing data identified 74 individuals with the same variant. All individuals carried haplotypes matching the epilepsy-affected families, suggesting all instances of the variant derive from a single mutational event. This unusual finding of a variant causing an autosomal dominant, early-onset disease in an outbred population that has persisted over many generations can be attributed to the relatively mild phenotype in most carriers and incomplete penetrance. Founder events are well established in autosomal recessive and late-onset disorders but are rarely observed in early-onset, autosomal dominant diseases. These findings suggest variants present in the population at low frequencies should be considered potentially pathogenic in mild phenotypes with incomplete penetrance and may be more important contributors to the genetic landscape than previously thought
Familial neonatal seizures in 36 families: clinical and genetic features correlate with outcome
Objective We evaluated seizure outcome in a large cohort of familial neonatal seizures (FNS), and examined phenotypic overlap with different molecular lesions. Methods Detailed clinical data were collected from 36 families comprising two or more individuals with neonatal seizures. The seizure course and occurrence of seizures later in life were analyzed. Families were screened for KCNQ2, KCNQ3, SCN2A, and PRRT2 mutations, and linkage studies were performed in mutation-negative families to exclude known loci. Results Thirty-three families fulfilled clinical criteria for benign familial neonatal epilepsy (BFNE); 27 of these families had KCNQ2 mutations, one had a KCNQ3 mutation, and two had SCN2A mutations. Seizures persisting after age 6 months were reported in 31% of individuals with KCNQ2 mutations; later seizures were associated with frequent neonatal seizures. Linkage mapping in two mutation-negative BFNE families excluded linkage to KCNQ2, KCNQ3, and SCN2A, but linkage to KCNQ2 could not be excluded in the third mutation-negative BFNE family. The three remaining families did not fulfill criteria of BFNE due to developmental delay or intellectual disability; a molecular lesion was identified in two; the other family remains unsolved. Significance Most families in our cohort of familial neonatal seizures fulfill criteria for BFNE; the molecular cause was identified in 91%. Most had KCNQ2 mutations, but two families had SCN2A mutations, which are normally associated with a mixed picture of neonatal and infantile onset seizures. Seizures later in life are more common in BFNE than previously reported and are associated with a greater number of seizures in the neonatal period. Linkage studies in two families excluded known loci, suggesting a further gene is involved in BFNE
Genetic epilepsy with febrile seizures plus: refining the spectrum
Objective: Following our original description of generalized epilepsy with febrile seizures plus (GEFS1) in 1997, we analyze the phenotypic spectrum in 409 affected individuals in 60 families (31 new families) and expand the GEFS1 spectrum. Methods: We performed detailed electroclinical phenotyping on all available affected family members. Genetic analysis of known GEFS1 genes was carried out where possible. We compared our phenotypic and genetic data to those published in the literature over the last 19 years. Results: We identified new phenotypes within the GEFS1 spectrum: focal seizures without preceding febrile seizures (16/409 [4%]), classic genetic generalized epilepsies (22/409 [5%]), and afebrile generalized tonic-clonic seizures (9/409 [2%]). Febrile seizures remains the most frequent phenotype in GEFS1 (178/409 [44%]), followed by febrile seizures plus (111/409 [27%]). One third (50/163 [31%]) of GEFS1 families tested have a pathogenic variant in a known GEFS1 gene. Conclusion: As 37/409 (9%) affected individuals have focal epilepsies, we suggest that GEFS1 be renamed genetic epilepsy with febrile seizures plus rather than generalized epilepsy with febrile seizures plus. The phenotypic overlap between GEFS1 and the classic generalized epilepsies is considerably greater than first thought. The clinical and molecular data suggest that the 2 major groups of generalized epilepsies share genetic determinants.National Health and Medical Research Council of Australia [628952, 1091593, 466671, 1006110, 1104831, 1032603, 1063799]SCI(E)ARTICLE121210-12198
PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome
Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia)
Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study.
BACKGROUND: The Epilepsy Genetics (EPIGEN) Consortium was established to undertake genetic mapping analyses with augmented statistical power to detect variants that influence the development and treatment of common forms of epilepsy. METHODS: We examined common variations across 279 prime candidate genes in 2717 case and 1118 control samples collected at four independent research centres (in the UK, Ireland, Finland, and Australia). Single nucleotide polymorphism (SNP) and combined set-association analyses were used to examine the contribution of genetic variation in the candidate genes to various forms of epilepsy. FINDINGS: We did not identify clear, indisputable common genetic risk factors that contribute to selected epilepsy subphenotypes across multiple populations. Nor did we identify risk factors for the general all-epilepsy phenotype. However, set-association analysis on the most significant p values, assessed under permutation, suggested the contribution of numerous SNPs to disease predisposition in an apparent population-specific manner. Variations in the genes KCNAB1, GABRR2, KCNMB4, SYN2, and ALDH5A1 were most notable. INTERPRETATION: The underlying genetic component to sporadic epilepsy is clearly complex. Results suggest that many SNPs contribute to disease predisposition in an apparently population-specific manner. However, subtle differences in phenotyping across cohorts, combined with a poor understanding of how the underlying genetic component to epilepsy aligns with current phenotypic classifications, might also account for apparent population-specific genetic risk factors. Variations across five genes warrant further study in independent cohorts to clarify the tentative association.Journal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe