6 research outputs found

    Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA

    Get PDF
    Haloalkane dehalogenases (EC 3.8.1.5) play an important role in hydrolytic degradation of halogenated compounds, resulting in a halide ion, a proton, and an alcohol. They are used in biocatalysis, bioremediation, and biosensing of environmental pollutants and also for molecular tagging in cell biology. The method of ancestral sequence reconstruction leads to prediction of sequences of ancestral enzymes allowing their experimental characterization. Based on the sequences of modern haloalkane dehalogenases from the subfamily II, the most common ancestor of thoroughly characterized enzymes LinB from Sphingobium japonicum UT26 and DmbA from Mycobacterium bovis 5033/66 was in silico predicted, recombinantly produced and structurally characterized. The ancestral enzyme AncLinB-DmbA was crystallized using the sitting-drop vapor-diffusion method, yielding rod-like crystals that diffracted X-rays to 1.5 & ANGS; resolution. Structural comparison of AncLinB-DmbA with their closely related descendants LinB and DmbA revealed some differences in overall structure and tunnel architecture. Newly prepared AncLinB-DmbA has the highest active site cavity volume and the biggest entrance radius on the main tunnel in comparison to descendant enzymes. Ancestral sequence reconstruction is a powerful technique to study molecular evolution and design robust proteins for enzyme technologies

    Structure and Function of the C-terminal Domain of the HsdR Subunit from the Type I Restriction-Modification System EcoR124

    No full text
    The Type I restriction-modification enzyme EcoR124 is a pentameric complex consisting of one specificity subunit, two methylation subunits and two motor subunits (HsdR) that can recognize specific DNA sequences and perform double-stranded DNA cleavage and modification. The HsdR subunit is responsible for ATP-dependent DNA translocation and DNA cleavage. Even though the first crystal structure of HsdR was obtained ten years ago, a large part of the C-terminus has not been resolved in any HsdR structures to date. This dissertation aims to elucidate its role within the HsdR subunit and the whole pentameric complex by solving the structure of the C-terminus by means of X-ray diffraction crystallography and explore its function using biochemical, microbiological, bioinformatical and computational methods

    pHluorin-assisted expression, purification, crystallization and X-ray diffraction data analysis of the C-terminal domain of the HsdR subunit of the Escherichia coli type I restriction-modification system EcoR124I

    No full text
    The HsdR subunit of the type I restriction-modification system EcoR124I is responsible for the translocation as well as the restriction activity of the whole complex consisting of the HsdR, HsdM and HsdS subunits, and while crystal structures are available for the wild type and several mutants, the C-terminal domain comprising approximately 150 residues was not resolved in any of these structures. Here, three fusion constructs with the GFP variant pHluorin developed to overexpress, purify and crystallize the C-terminal domain of HsdR are reported. The shortest of the three encompassed HsdR residues 887-1038 and yielded crystals that belonged to the orthorhombic space group C2221_1, with unit-cell parameters a = 83.42, b = 176.58, c = 126.03 Å, α\alpha = β\beta = γ\gamma = 90.00° and two molecules in the asymmetric unit (VM_M = 2.55 Å3^3 Da−1^{-1}, solvent content 50.47%). X-ray diffraction data were collected to a resolution of 2.45 Å

    Crystallization and Crystallographic Analysis of a Bradyrhizobium Elkanii USDA94 Haloalkane Dehalogenase Variant with an Eliminated Halide-Binding Site

    No full text
    Haloalkane dehalogenases are a very important class of microbial enzymes for environmental detoxification of halogenated pollutants, for biocatalysis, biosensing and molecular tagging. The double mutant (Ile44Leu + Gln102His) of the haloalkane dehalogenase DbeA from Bradyrhizobium elkanii USDA94 (DbeAΔCl) was constructed to study the role of the second halide-binding site previously discovered in the wild-type structure. The variant is less active, less stable in the presence of chloride ions and exhibits significantly altered substrate specificity when compared with the DbeAwt. DbeAΔCl was crystallized using the sitting-drop vapour-diffusion procedure with further optimization by the random microseeding technique. The crystal structure of the DbeAΔCl has been determined and refined to the 1.4 Å resolution. The DbeAΔCl crystals belong to monoclinic space group C121. The DbeAΔCl molecular structure was characterized and compared with five known haloalkane dehalogenases selected from the Protein Data Bank
    corecore