2,308 research outputs found

    Hindbrain Neurons as an Essential Hub in the Neuroanatomically Distributed Control of Energy Balance

    Get PDF
    This Review highlights the processing and integration performed by hindbrain nuclei, focusing on the inputs received by nucleus tractus solitarius (NTS) neurons. These inputs include vagally mediated gastrointestinal satiation signals, blood-borne energy-related hormonal and nutrient signals, and descending neural signals from the forebrain. We propose that NTS (and hindbrain neurons, more broadly) integrate these multiple energy status signals and issue-output commands controlling the behavioral, autonomic, and endocrine responses that collectively govern energy balance. These hindbrain-mediated controls are neuroanatomically distributed; they involve endemic hindbrain neurons and circuits, hindbrain projections to peripheral circuits, and projections to and from midbrain and forebrain nuclei

    Electronic structure of unidirectional superlattices in crossed electric and magnetic fields and related terahertz oscillations

    Full text link
    We have studied Bloch electrons in a perfect unidirectional superlattice subject to crossed electric and magnetic fields, where the magnetic field is oriented ``in-plane'', i.e. in parallel to the sample plane. Two orientation of the electric field are considered. It is shown that the magnetic field suppresses the intersubband tunneling of the Zener type, but does not change the frequency of Bloch oscillations, if the electric field is oriented perpendicularly to both the sample plane and the magnetic field. The electric field applied in-plane (but perpendicularly to the magnetic field) yields the step-like electron energy spectrum, corresponding to the magnetic-field-tunable oscillations alternative to the Bloch ones.Comment: 7 pages, 1 figure, accepted for publication in Phys. Rev.

    Magneto-resistance quantum oscillations in a magnetic two-dimensional electron gas

    Get PDF
    Magneto-transport measurements of Shubnikov-de Haas (SdH) oscillations have been performed on two-dimensional electron gases (2DEGs) confined in CdTe and CdMnTe quantum wells. The quantum oscillations in CdMnTe, where the 2DEG interacts with magnetic Mn ions, can be described by incorporating the electron-Mn exchange interaction into the traditional Lifshitz-Kosevich formalism. The modified spin splitting leads to characteristic beating pattern in the SdH oscillations, the study of which indicates the formation of Mn clusters resulting in direct anti-ferromagnetic Mn-Mn interaction. The Landau level broadening in this system shows a peculiar decrease with increasing temperature, which could be related to statistical fluctuations of the Mn concentration.Comment: 8 pages, 6 figure

    Electrical properties of CdTe near the melting point

    Get PDF
    A new experimental setup for the investigation of electrical conductivity (σ) in liquid and solid CdTe was built for a better understanding of the properties near the melting point (MP). The temperature dependence of σ was studied, within the interval 1,050-1,130°C, at defined Cd-partial pressures 1.3-1.6 atm, with special attention to the liquid-solid phase transition. We found that the degree of supercooling decreases with increasing Cd overpressure and reaches the lowest value at 1.6 atm without change of the melting temperature during heating

    The Habitat Demonstration Unit Project Overview

    Get PDF
    This paper will describe an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) Project. The HDU project is a "technology-pull" project that integrates technologies and innovations from numerous NASA centers. This project will be used to investigate and validate surface architectures, operations concepts, and requirements definition of various habitation concepts. The first habitation configuration this project will build and test is the Pressurized Excursion Module (PEM). This habitat configuration - the PEM - is based on the Constellation Architecture Scenario 12.1 concept of a vertically oriented habitat module. The HDU project will be tested as part of the 2010 Desert Research and Technologies Simulations (D-RATS) test objectives. The purpose of this project is to develop, integrate, test, and evaluate a habitat configuration in the context of the mission architectures and surface operation concepts. A multi-center approach will be leveraged to build, integrate, and test the PEM through a shared collaborative effort of multiple NASA centers. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Lunar Surface Systems Project Office (LSSPO) to test surface elements in a surface analog environment. The 2010 analog field test will include two Lunar Electric Rovers (LER) and the PEM among other surface demonstration elements. This paper will describe the overall objectives, its various habitat configurations, strategic plan, and technology integration as it pertains to the 2010 and 2011 field analog tests. To accomplish the development of the PEM from conception in June 2009 to rollout for operations in July 2010, the HDU project team is using a set of design standards to define the interfaces between the various systems of PEM and to the payloads, such as the Geology Lab, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a habitat avionics test bed prior to equipment installation into PEM are planned to facilitate the integration process

    Excitonic photoluminescence in symmetric coupled double quantum wells subject to an external electric field

    Full text link
    The effect of an external electric field F on the excitonic photoluminescence (PL) spectra of a symmetric coupled double quantum well (DQW) is investigated both theoretically and experimentally. We show that the variational method in a two-particle electron-hole wave function approximation gives a good agreement with measurements of PL on a narrow DQW in a wide interval of F including flat-band regime. The experimental data are presented for an MBE-grown DQW consisting of two 5 nm wide GaAs wells, separated by a 4 monolayers (MLs) wide pure AlAs central barrier, and sandwiched between Ga_{0.7}Al_{0.3}As layers. The bias voltage is applied along the growth direction. Spatially direct and indirect excitonic transitions are identified, and the radius of the exciton and squeezing of the exciton in the growth direction are evaluated variationally. The excitonic binding energies, recombination energies, oscillator strengths, and relative intensities of the transitions as functions of the applied field are calculated. Our analysis demonstrates that this simple model is applicable in case of narrow DQWs not just for a qualitative description of the PL peak positions but also for the estimation of their individual shapes and intensities.Comment: 5 pages, 4 figures (accepted in Phys. Rev. B

    Understanding the Excess 1/f Noise in MOSFETs at Cryogenic Temperatures

    Get PDF
    Characterization, modeling, and development of cryo-temperature CMOS technologies (cryo-CMOS) have significantly progressed to help overcome the interconnection bottleneck between qubits and the readout interface in quantum computers. Nevertheless, available compact models still fail to predict the deviation of 1/f noise from the expected linear scaling with temperature ( T\textit{T} ), referred to as “excess 1/f noise”, observed at cryogenic temperatures. In addition, 1/f noise represents one of the main limiting factors for the decoherence time of qubits. In this article, we extensively characterize low-frequency noise on commercial 28-nm CMOS and on research-grade Ge-channel MOSFETs at temperatures ranging from 370 K down to 4 K. Our investigations exclude electron heating and bulk dielectric defects as possible causes of the excess 1/f noise at low temperatures. We show further evidence for a strong correlation between the excess 1/f noise and the saturation of the subthreshold swing (SS) observed at low temperatures. The most plausible cause of the excess noise is found in band tail states in the channel acting as additional capture/emission centers at cryogenic temperatures
    • 

    corecore