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INTRODUCTION

Cadmium-telluride (CdTe) single crystals are
widely used for fabrication of gamma-ray and x-ray
detectors and as substrates for narrow-gap (HgCd)Te
epitaxy. For increasing production ef�ciency of
both detectors and substrates, the growth of large-
diameter, inclusion and precipitate-free single crys-
tals with low concentration of native and foreign
defects is necessary. It is known from available grow-
ing experiments that the quality of CdTe single crys-
tals is connected with the history of the melt. But so
far, the knowledge about the properties of the CdTe
melt and about the process of solidi�cation is insuf�-
cient. The properties of CdTe melt differ extremely
from other semiconductors. It was found that the dis-
sociation of CdTe molecules to Cd and Te atoms is
only 5%, slightly above the melting point (MP).1
Strong cohesive forces remain after the breaking of
the long-range ordered and the short-range ordered
clusters were observed by neutron-diffraction mea-
surements in the melt.2 The weak dissociation and
semiconductor-like character of the CdTe melt was
also con�rmed by electrical measurements, which
show that the electrical conductivity of the liquid
CdTe increases with increasing temperature simi-
larly to solid-phase semiconductors.3–7 The tempera-
ture limit where semiconducting behavior changes to
the metallic one was not reached up to 1,500°C.8 For
deeper understanding of the properties of the CdTe
melt, we have built a new experimental setup for the

investigation of s in liquid and solid CdTe near the
MP. First results of the temperature dependence of s
in the temperature interval 1,050–1,130°C at three
different Cd-partial pressures (PCd) are presented in
this paper.

EXPERIMENT

The undoped, stoichiometric CdTe used in this
study was grown by the vertical-gradient freezing
method from 6N-purity Cd and Te elements in the
charge. Electrical conductivity was measured by the
van der Pauw method in the temperature range
1,050–1,130°C at de�ned PCd 1.3–1.6 atm. A special
experimental con�guration,9 which allows the pre-
cise setting of PCd by means of argon overpressure,
was used in our experiment. The diagram of the ex-
perimental setup is shown in Fig. 1. The measuring
cell is a vertical half-open quartz tube with four con-
tact pipes, which are located at the bottom of the
cell. Graphite rods inside the pipes are used for con-
tacts because only graphite is a suitable contact ma-
terial because of the high reactivity of liquid CdTe
with most metals. The cell is shielded by another
closed quartz tube, which is �lled by argon. At the
beginning of the experiment, the measuring cell is
�lled by CdTe powder and excess Cd is added as a
source of Cd overpressure. After heating up above
the MP, the powder is molten, and liquid CdTe �lled
the whole volume of the cell above the graphite-
contact rods. The de�ned PCd above the sample is
established by evaporation of Cd from the added Cd
source and its condensation on a wall of the cell at
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maximum in s near 1,085°C, which appeared during
heating at all PCd. Making a decision as to whether
this effect corresponds to some special process in
the material or whether it is related to the mea-
suring conditions needs more extensive study in this
�eld.

The comparison of our and other published results
of the temperature dependence of s in liquid and
solid CdTe near the MP is presented in Fig. 3. In the
case of Refs. 3 and 6, the measurements without
de�ned PCd were done. The results, which are
close to our presented data, were published in
Ref. 4, where liquid-solid phase transition including

the place1 where temperature decreases below the
dew point of Cd. The liquid cadmium drops, conse-
quently, along the wall to the place with higher
temperature, where it evaporates again. This cycle
is similar to the operation regime of the diffusion
pump. The temperature of Cd condensation, which
de�nes PCd, depends on the argon pressure, which is
PC controlled by a pressure gauge. The total pres-
sure in the measuring cell is the sum of Cd and Ar
partial pressures. The Cd/Ar pressure ratio depends
on the place in the cell, and it changes from the pure
Cd pressure near the CdTe surface to the same value
of Ar pressure at the top of the cell. During our
experiment, several runs through the solid-liquid
phase transition were carried out, the velocity of
heating/cooling being 15°C/h. The experimental setup
was designed to obtain the data from the liquid and
solid CdTe in the temperature range near the MP.
The precise electrical investigation of the solid CdTe
far from the MP is dif�cult using this setup because of
the microcracks between the CdTe and the graphite
contacts in the measuring cell.

RESULTS AND DISCUSSION

The temperature dependence of s of CdTe near the
MP for three different Cd pressures both in the heat-
ing and the cooling regime is shown in Fig. 2. As can
be seen, the liquid CdTe remains semiconducting for
all investigated PCd up to a temperature of 1,130°C,
and the slope of the temperature dependence of s in
the liquid is practically independent of PCd. The solid
line sL D 9.1 £ 104 exp(¡0.8 eV=kBT) (Ä¡1 cm¡1) rep-
resents the exponential �t of the conductivity of the
liquid CdTe, and s i

S is the intrinsic conductivity of
the solid CdTe calculated according to the theo-
retical model.10 Detailed measurements with small
temperature steps allowed us to distinguish a small

Fig. 1. The diagram of the measuring setup.

Fig. 2. The temperature dependence of the electrical conductivity s
at three different Cd pressures. The solid line sL shows the expo-
nential � t of s in the liquid, and s i

S represents the intrinsic conductiv-
ity of the solid calculated according to our theoretical model.10 The
term Tm marks the temperature of the congruent MP and arrows
indicate the cooling/heating regime.

Fig. 3. The overview of temperature dependencies of s of liquid and
solid CdTe near the MP published by various authors. The term Tm

marks the temperature of the congruent MP.
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The most credible, current theoretical models de-
scribing structural properties of liquids are based on
large-scale, molecular-dynamics simulations, and the
supercooled stoichiometric CdTe was also studied by
this method.14,15 However, the effect of stoichiome-
try deviations on the supercooling was not examined
yet. Nevertheless, the results obtained for stoichio-
metric CdTe can be used for a qualitative explana-
tion of the observed dependence of 1T¡ on PCd or x.
It was found that Te atoms form extended chainlike
structures in the CdTe melt near the MP.2,15 These
structures must be rearranged and broken during
crystallization to form Cd-Te pairs exclusively. In
the case of increased x (decreased PCd), the struc-
tures are more stable, and the rearrangement is
complicated (increasing 1T¡). On the other hand,
Cd atoms do not form extended structures, being the
less stable and more mobile species in the system. In
addition, higher concentration of Cd atoms causes
destruction of the Te chains more easily and pro-
motes the phase transition. Therefore, the increased
PCd (or content of Cd) results in decreasing 1T¡.

CONCLUSIONS

A new experimental setup for the investigation of
the electrical conductivity in the liquid and solid
CdTe near the MP was presented. The temperature
dependence of s was studied during the phase tran-
sition from liquid to solid CdTe and back at de�ned
Cd-partial pressures 1.3–1.6 atm. We investigated
in detail the degree of the supercooling 1T¡ of the
CdTe melt depending on PCd. It was found that 1T¡

decreases with increasing PCd both in Te-rich and in
Cd-rich material. This result is important for the
preparation of single crystals, where a minimum su-
percooling is one of the dominant requests. Because
the density of Cd inclusions in the crystal increases
at higher PCd, the determination of the optimal Cd
overpressure during the crystal growth, which elim-
inates both higher supercooling and formation of in-
clusions, is necessary for production of high-quality,
large-diameter CdTe single crystals.
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