161 research outputs found

    New supersymmetric Wilson loops in ABJ(M) theories

    Full text link
    We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembo's construction in N=4 SYM. The second one involves arbitrary curves on the two dimensional sphere. In both cases one can add certain scalar and fermionic couplings to the Wilson loop so it preserves at least two supercharges. Some previously known loops, notably the 1/2 BPS circle, belong to this class, but we point out more special cases which were not known before. They could provide further tests of the gauge/gravity correspondence in the ABJ(M) case and interesting observables, exactly computable by localizationComment: 9 pages, no figure. arXiv admin note: text overlap with arXiv:0912.3006 by other author

    Morita Duality and Noncommutative Wilson Loops in Two Dimensions

    Full text link
    We describe a combinatorial approach to the analysis of the shape and orientation dependence of Wilson loop observables on two-dimensional noncommutative tori. Morita equivalence is used to map the computation of loop correlators onto the combinatorics of non-planar graphs. Several nonperturbative examples of symmetry breaking under area-preserving diffeomorphisms are thereby presented. Analytic expressions for correlators of Wilson loops with infinite winding number are also derived and shown to agree with results from ordinary Yang-Mills theory.Comment: 32 pages, 9 figures; v2: clarifying comments added; Final version to be published in JHE

    Wilson Loops and Area-Preserving Diffeomorphisms in Twisted Noncommutative Gauge Theory

    Get PDF
    We use twist deformation techniques to analyse the behaviour under area-preserving diffeomorphisms of quantum averages of Wilson loops in Yang-Mills theory on the noncommutative plane. We find that while the classical gauge theory is manifestly twist covariant, the holonomy operators break the quantum implementation of the twisted symmetry in the usual formal definition of the twisted quantum field theory. These results are deduced by analysing general criteria which guarantee twist invariance of noncommutative quantum field theories. From this a number of general results are also obtained, such as the twisted symplectic invariance of noncommutative scalar quantum field theories with polynomial interactions and the existence of a large class of holonomy operators with both twisted gauge covariance and twisted symplectic invariance.Comment: 23 page

    Lorentz Anomaly and 1+1-Dimensional Radiating Black Holes

    Get PDF
    The radiation from the black holes of a 1+1-dimensional chiral quantum gravity model is studied. Most notably, a non-trivial dependence on a renormalization parameter that characterizes the anomaly relations is uncovered in an improved semiclassical approximation scheme; this dependence is not present in the naive semiclassical approximation.Comment: 7 pages, LaTe

    Cornwall-Jackiw-Tomboulis effective potential for canonical noncommutative field theories

    Full text link
    We apply the Cornwall-Jackiw-Tomboulis (CJT) formalism to the scalar λϕ4\lambda \phi^{4} theory in canonical-noncommutative spacetime. We construct the CJT effective potential and the gap equation for general values of the noncommutative parameter θμν\theta_{\mu\nu}. We observe that under the hypothesis of translational invariance, which is assumed in the effective potential construction, differently from the commutative case (θμν=0\theta_{\mu\nu}= 0), the renormalizability of the gap equation is incompatible with the renormalizability of the effective potential. We argue that our result, is consistent with previous studies suggesting that a uniform ordered phase would be inconsistent with the infrared structure of canonical noncommutative theories.Comment: 15 pages, LaTe

    Classical Solutions of the TEK Model and Noncommutative Instantons in Two Dimensions

    Full text link
    The twisted Eguchi-Kawai (TEK) model provides a non-perturbative definition of noncommutative Yang-Mills theory: the continuum limit is approached at large NN by performing suitable double scaling limits, in which non-planar contributions are no longer suppressed. We consider here the two-dimensional case, trying to recover within this framework the exact results recently obtained by means of Morita equivalence. We present a rather explicit construction of classical gauge theories on noncommutative toroidal lattice for general topological charges. After discussing the limiting procedures to recover the theory on the noncommutative torus and on the noncommutative plane, we focus our attention on the classical solutions of the related TEK models. We solve the equations of motion and we find the configurations having finite action in the relevant double scaling limits. They can be explicitly described in terms of twist-eaters and they exactly correspond to the instanton solutions that are seen to dominate the partition function on the noncommutative torus. Fluxons on the noncommutative plane are recovered as well. We also discuss how the highly non-trivial structure of the exact partition function can emerge from a direct matrix model computation. The quantum consistency of the TEK formulation is eventually checked by computing Wilson loops in a particular limit.Comment: 41 pages, JHEP3. Minor corrections, references adde

    Chiral Solitons in a Current Coupled Schr\"odinger Equation With Self Interaction

    Full text link
    Recently non-topological chiral soliton solutions were obtained in a derivatively coupled non-linear Schr\"odinger model in 1+1 dimensions. We extend the analysis to include a more general self-coupling potential (which includes the previous cases) and find chiral soliton solutions. Interestingly even the magnitude of the velocity is found to be fixed. Energy and U(1) charge associated with this non-topological chiral solitons are also obtained.Comment: 8 pages, no figure, to appear in Phys. Rev.

    Time-dependent quantum scattering in 2+1 dimensional gravity

    Full text link
    The propagation of a localized wave packet in the conical space-time created by a pointlike massive source in 2+1 dimensional gravity is analyzed. The scattering amplitude is determined and shown to be finite along the classical scattering directions due to interference between the scattered and the transmitted wave functions. The analogy with diffraction theory is emphasized.Comment: 15 pages in LaTeX with 3 PostScript figure

    Gauge Theory on Fuzzy S^2 x S^2 and Regularization on Noncommutative R^4

    Full text link
    We define U(n) gauge theory on fuzzy S^2_N x S^2_N as a multi-matrix model, which reduces to ordinary Yang-Mills theory on S^2 x S^2 in the commutative limit N -> infinity. The model can be used as a regularization of gauge theory on noncommutative R^4_\theta in a particular scaling limit, which is studied in detail. We also find topologically non-trivial U(1) solutions, which reduce to the known "fluxon" solutions in the limit of R^4_\theta, reproducing their full moduli space. Other solutions which can be interpreted as 2-dimensional branes are also found. The quantization of the model is defined non-perturbatively in terms of a path integral which is finite. A gauge-fixed BRST-invariant action is given as well. Fermions in the fundamental representation of the gauge group are included using a formulation based on SO(6), by defining a fuzzy Dirac operator which reduces to the standard Dirac operator on S^2 x S^2 in the commutative limit. The chirality operator and Weyl spinors are also introduced.Comment: 39 pages. V2-4: References added, typos fixe
    corecore